
CSE 451: Operating Systems

Spring 2022

Module 9

A Kind of Review

John Zahorjan

Basic Questions
1. Why have an operating system?

2. What is/are the primary function(s) of the OS?

3. What hardware support is “required” to run an OS?

4. Is the compiler/language part of the OS? OS aware?

5. What OS functionality has to be part of the kernel?
What OS functionality doesn’t?

Execution Environments

• What is the process concept?

• What are the/some major functions the OS has to implement to
provide processes?

• What aspects of the computer system is a process isolated from?
What aspects of the computer system isn’t it isolated from?

• What facilities does the OS provide to get around the isolation?

• Is there any alternative to “process”?

https://www.docker.com/resources/what-container/

Concurrency

• Why might a programmer want to express an individual application
as a set of concurrent control flows?

• What mechanisms are available to the programmer to express those
concurrent control flows?

• Why isn’t just one mechanism enough?

• Why might “the system” want its workload expressed as concurrent
control flows?

Sharing the CPU

• Why multiplex a single core across multiple control flows?
Why not just assign each control flow its own core?

• Is specialized hardware support required to multiplex a core?
• If so, what is that support and what can be achieved with that support that

couldn’t be achieved without it?
• If not, could better performance or more robust functionality be achievable if

there were specialized support?

Sharing the CPU

• When an execution stream cannot make use of a core right now,
what should it do?

• How can it do that?

• When it does that, how does it stop doing it?

Concurrency: Synchronization
• What does “simultaneous” mean?

• How do you prevent two instructions from being simultaneous?

• What is a critical section?

• What properties must a mutual exclusion solution have?

• Why is it easier to implement mutual exclusion on a one core system (like xk)
than on a multi-core system?

• Why “must” there be hardware support to implement fast mutual exclusion
mechanisms?

• What is the basic issue?
• What are some example solutions?

Concurrency: granularity

• What is the idea of “granularity”?

• What is the impact of granularity?

• What is a (canonical) example of a granularity decision?

• How does the web server implementation you did in 332 relate to
granularity?

Architecture: Main Memory Caches

• Why are there main memory caches?

• Why do they operate “transparently” (to program execution)?
• Why not put them under program control?

• Can you think of (an) examples of how caches affect implementation
(related to this course)?

Architecture: Multicores

• What is sequential consistency?

• Is it achievable on single core systems?

• Why isn’t it achievable (in any practical way) on multicore systems?

Architecture: Multicores

• What is cache consistency?

• What is memory consistency?

• How do you deal with memory consistency that is weaker than
sequential consistency?

• What hardware support is used to deal with the issue?

Dependences

• Why does the compiler want to rewrite (reorder the instructions of)
your program?

• Why does the hardware want to execute instructions out of program
order?

• Which reorderings are considered legal?

Virtual Memory

• What is address translation?
• Why is it useful?
• What’s another reason?
• And another reason?

• What is paging?
• Why is it useful?

• True or False:
A program execution that exhibits good page locality will exhibit good
cache locality

Mechanism vs. Policy

• What is the distinction between mechanism and policy?

• There is a potential policy decision whenever the code has to make a
choice

• Have you seen any policies implemented in xk?
• What seem like situations in which you might want to implement a policy?

Deferring Policy

• Sometimes (often) you can parameterize execution
• You pass in arguments that select from among pre-programmed alternatives

• The most general scheme is to defer decisions to code from the layer
above

• Feels like exception handling
• Upper layer registers a method to be invoked when a decision has to be made
• Lower layer notices when the decision has to be made and does an “upcall” to the

handler
• Signals

• How might you apply that approach to paging?

Synchronization Primitives and Policy

• Locks
• spin locks
• blocking locks (mutexes)
• spin then block locks
• readers-writers locks
• MCS locks
• [RCU locks]

• Priority inversion and locks

Handling Latency

• What is “latency”?

• What are the approaches for dealing with it?
• Concurrency
• Caching
• Batching
• Speculation
• Lazy evaluation

• Have we seen a situation in this course where “the OS” might
confront latency and be able to do something about it?

