CSE 451: Operating Systems
Spring 2022

Module 6

Synchronization

John Zahorjan

Temporal relations

* Machine instructions executed by a single thread are totally ordered
e A<B<(Cx<...
* This is called “program order”

* (Interesting aside: actually, that isn’t necessarily true, physically. To go fast, each
core tries to execute many instructions at once, possibly out of order. However, it
does so in a way that it has the same effect as totally ordered execution. Usually.)

* Unless there is explicit synchronization, instructions executed by distinct
threads must be considered unordered

* Not X< X/, and not X’ < X

* Not X< X" and not X’ < X is simultaneous
e unordered
e at the same time

 If Xand X’ access the same memory location, and at least one of them is a
write, it is a “data race”

Example

main ()

2O

¢

pthread create()

)\Osub()
A'

O g

Y-axis is “time”’

Could be one core, could
be multiple cores.

*A<B<C
*A'<B'
* A<A
e C==A
+C =8

Critical Sections / Mutual Exclusion / Locks

e Sequences of instructions that may get incorrect results if executed
simultaneously are called critical sections

* (We also use the term race condition to refer to a situation in which
the results depend on timing)

* Mutual exclusion means “not simultaneous”
e EitherA<BorB<A
* We don’t care which

* Forcing mutual exclusion between two critical section executions is
sufficient to ensure correct execution — guarantees ordering

* One way to guarantee mutually exclusive execution is using locks

Critical sections How many cores

are in use here?

T T2 Tl T2 T T2

T e

Possibly incorrect

When do critical sections arise?

* One common pattern:
* read-modify-write of
e a shared value (variable)
* in code that can be executed concurrently

(Note: There may be only one copy of the code (e.g., a procedure), but it can
be executed by more than one thread at a time)

* Shared variables
* Globals and heap-allocated variables

* to keep your sanity, follow the convention of NOT sharing local variables
(which are on the stack) across threads

(Never give a reference to a stack-allocated (local) variable to another thread,
unless you’re superhumanly careful ...)

* Can you pass a local as an argument to a function?

Example: buffer management

* In this example, one thread puts data into a buffer that another
thread reads from

e Shared resource: buffer data structure

* Read-modify-write: each slot is either empty or free; operations
get() and put() both read and modify a slot status

network

/\ writer
thread

disk reader
thread

circular
buffer

Why use threads in that example?

The classic shared bank account example

* Suppose we have to implement a function to withdraw money from a
bank account:

int withdraw (account, amount) {

int balance = get balance (account); // read
if (balance >= amount) {
balance -= amount; // modify
put balance (account, balance); // write

spit out cash;

* Now suppose that you and your partner share a bank account with a balance of $500.

* What happens if you both go to separate ATM machines, and simultaneously withdraw $50
from the account?

* Assume the bank’s application is multi-threaded, and...

* Arandom thread is assigned a transaction when that transaction is

submitted

int withdraw (account, amount) {
int balance = get balance (account);
if (balance >= amount) {
balance -= amount;
put balance (account, balance);

spit out cash;

int withdraw (account, amount) {

int balance = get balance (account) ;
if (balance >= amount) {
balance -= amount;

put balance (account, balance);

spit out cash;

Interleaved schedules

* The problem is that the execution of the two threads can be

interleaved, assuming preemptive scheduling:

balance = get balance (account);

balance -= amount;
Execqunsequence balance = get balance (account);
as seen by CPU

balance -= amount;

put balance (account, balance);

spit out cash;

v put balance (account, balance);

spit out cash;

* What's the account balance after this sequence?
* Who's happy, the bank or you?
e Suppose the two of you make simultaneous deposits?

* How often is this sequence likely to occur?
 Can this happen if there is only one physical core?

context switch

context switch

How many cores
are in use in this
example?

Other Execution Orders

* Which interleavings are ok? Which are not?

int withdraw (account, amount) {

int balance = get balance (account) ;
if (balance >= amount) {
balance -= amount;

put balance (account, balance);

spit out cash;

int withdraw (account, amount) {

int balance = get balance (account);
if (balance >= amount) {
balance -= amount;

put balance (account, balance);

spit out cash;

Correct critical section requirements

 Correct critical sections have the following requirements

1. mutual exclusion
e at most one thread is in the critical section

2. progress

 if thread T is outside the critical section, then T cannot prevent thread S from entering
the critical section

3. bounded waiting (no starvation)

 if thread T is waiting on the critical section, then T will eventually enter the critical
section

* assumes threads eventually leave critical sections

4. performance

* the overhead of entering and exiting the critical section is small with respect to the work
being done within it (related to granularity)

* High overhead solution: all threads wanting to enter critical section contact a server and
the server replies when it’s your turn to enter

Synchronization mechanisms for building critical sections

* Locks (spinlocks)
e primitive, minimal semantics; used to build others

* Mutexes (blocking locks)

* Semaphores
* basic, easy to get the hang of, somewhat hard to program with

* Monitors
* higher level, “requires” language support, implicit operations
* easier to program; Java “synchronized ()” as an example

* Messages

* simple model of communication and synchronization based on (atomic)
transfer of data across a channel

* direct application to distributed systems

Locking (Locks)

* Locking has two operations:
* acqguire ():obtain the right to enter the critical section
* release ():give up the right to be in the critical section
* (Note: terminology can vary: acquire/release, lock/unlock)

 acquire()/release() provide the four conditions required to be a critical
section solution

* A lock is (usually) a memory object and code that supports those
operations in a particular way (that we’ll see shortly)

Locks: Example

lock ()
@ lock ()
@
@ < What happens during this time?
unlock () (spinlock vs. mutex)
I
9
O
unlock ()

—€

Acquire/Release

* Each threads pairs calls to acquire () and release ()
* between acquire ()and release (), the thread holds the lock

* The acquire () call is the request.
The return is the response indication that the caller now “owns”
(holds) the lock

* at most one thread can hold a lock at a time

 What happens if the calls aren’t paired (fail to call release)?

* What happens if the two threads acquire different locks?

(I think that access to a particular shared data structure is mediated by lock A, and you
think it’s mediated by lock B)

* Why is granularity of locking important

 fine grained => not much work done between acquire() and release()
e coarse grained => lots of work done between acquire() and release()

Using locks

int withdraw (account, amount) {

acquire (lock) ;

balance = get balance (account);
if (balance >= amount) {
balance -= amount;

put balance (account, balance);

}

release (lock) ;

spit out cash;

critical

section

acquire (lock)
balance = get balance (account) ;

balance -= amount;

acquire (lock)

put balance (account, balance);
release (lock) ;

balance = get balance (account) ;
balance -= amount;

put balance (account, balance);
release (lock) ;

spit out cash;

spit out cash;

* What happens when green tries to acquire the lock?
* Why is reading the balance inside the critical section?

* Why isn’t “spit out cash” inside the critical section?
* Could it be put inside the critical section?

Roadmap ...

* Where have we just been?
* Critical sections are a common property of concurrent/parallel code
* Mutual exclusion is a mechanism to ensure a kind atomic execution of critical sections

* Where are we going?
* Synchronization constructs provide the programmer with abstractions that address synchronization
problemes, like critical sections
* The most primitive/fundamental abstraction is acquire()/release(): the lock
* It can provide a solution if used correctly
* It's easy to mis-use it, though
* “Higher level” synchronization abstractions provide additional semantics that can make them easier to use
correctly, but usually at the cost of more overhead

* The implementation of these higher level synchronization primitives often involves critical sections, so we
layer the implementation (relying on the lock, say, for mutual exclusion)

* At the bottom of the layered implementations, it turns out we require some sort of hardware
support
* Software implementing acquire()/release “needs” to do a read-modify-write
* Software can’t use itself to achieve that, so we need lower level support
* So we “need” some atomic instruction that does at least two logically distinct things
* Basically, there’s a read phase followed by a write phase

* Done atomically
* This hardware mechanism(s) are not intended to be utilized directly in user programs
* They're used to build software that implements somewhat higher abstractions that are used in user programs

Our First Primitives: Locks and Mutexes

lock ()
8 lock () What happens during this time?
) < 1. Spinlock — keep using core
while waiting
unlock() T 2. Mutex — give up core while
O waiting
unlock ()

—

Spinlocks

* A spinlock is a lock where the thread attempting acquire() “spins”
(tries over and over without relinquishing its core)

* How do we implement spinlocks? Here’s one attempt:

struct lock t {
int held = 0;
}

void acquire (lock)

}

void release (lock)

lock->held = 0;

{

while (lock->held);
lock—->held = 1;

{

.
<

* Why doesn’t this work?

* where is the race condition?
* does it work if there’s only one core?

the caller “busy-waits”,
or “spins”, for lock to be
released = hence spinlock

Implementing spinlocks

* Problem is that implementation of spinlocks is itself a critical section

* acquire/release must be atomic
* atomic == executes as though it could not be interrupted
* code that executes “all or nothing”

* Need help from the hardware

1. atomic instruction

* many instances of the instruction can be executed concurrently, because the hardware
provides atomicity at the instruction level

* test-and-set, compare-and-swap, ...

2. disable interrupts
e Terrible idea...
e Used in xk...
* Provides for atomic sequence of arbitrary instructions, when it works

Atomic Instruction: Test-and-Set

* CPU hardware provides the following operation as a single atomic
instruction:

bool (bool *flag) {
bool old = *flag; // save value in a local (register)
*flag = True; // make sure value is True
return old; // return old value

}

 Remember, this is a single atomic instruction ...
* Remember, this is just one example of possible hardware support

Implementing spinlocks using Test-and-Set

* So, to fix our broken spinlocks:

struct lock {
int held = 0;
}
void acquire (lock) {
while (test and set (&lock->held));
}
volid release (lock) {

lock->held = 0;

mutual exclusion? (at most one thread in the critical section)
progress? (T outside cannot prevent S from entering)
bounded waiting? (waiting T will eventually enter)
performance? (low overhead?)

Lock instruction?

* Would a single atomic instruction whose semantics were the while
loop shown on the last slide be “better” than just a test-and-set

instruction?

e The instruction would execute until it found atomically that the memory
location had value 0 and had setitto 1?

* Any Pro’s?
* Any Con’s?

Reminder of use ...

balance = get balance (account);

balance -= amount;

int withdraw (account, amount) {

put balance (account, balance);

balance = get balance (account);
- — c
©
balance —-= amount; ,g-E
x 8 balance = get balance (account);
put balance (account, balance); (SR
- balance -= amount;

put balance (account, balance);
spit out cash;

spit out cash;

spit out cash;

* How could a thread spinning in acquire (that is, stuck in a test-and-set loop)
yield its core?

 voluntarily calls yield() (spin-then-block lock)
 there’s an involuntary context switch (e.g., timer interrupt)

* When should a thread that has yielded the core be given a core again?

Problems with spinlocks

* Spinlocks work, but can be wasteful
 if a thread is spinning on a lock, the thread holding the lock cannot make progress
* You'll spin for a scheduling guantum
* (pthread spin t)

* Generally want to use spinlocks only as primitives to build higher-level
synchronization constructs

* We'll see later how to build blocking locks
» But there is overhead — can be cheaper to spin
* (pthread mutex t)

» Are there other “policy” choices (than spin and block)?
* Who should make them?
* pthread spin trylock()

A second approach: Disabling interrupts

struct lock {
}
void acquire (lock)
cli();
}
void release (lock)
sti();

// disable interrupts

// reenable interrupts

{

{

What'’s the key point about
disabling interrupts?

Problems with disabling interrupts

* Available only to the kernel!
e Can’t allow user-level to disable interrupts!

* Insufficient on a multicore!
* Each core has its own interrupt mechanism

* “Long” periods with interrupts disabled can wreak havoc with

devices!
e “Stuff doesn’t work”

* Just as with spinlocks, you (would) want to use disabling of interrupts
only when the duration of disabling is well understood (and short)

* E.g., to build higher-level synchronization constructs

summary

* Synchronization enforces temporal ordering constraints among instruction
streams

* Adding synchronization can eliminate races
* Synchronization can be provided by locks, semaphores, monitors, messages

 Spinlocks are a lowest-level mechanism
e primitive in terms of semantics — error-prone

* implemented by sEm waiting (crude) or by disabling interrupts (even cruder and
doesn’t really work these days)

* Make sense only when it’s “guaranteed” the lock will be released very soon

* Next...

* Condition variables
* Blocking as a concept/mechanism
e Semaphores: synchronization variable
* Importantly, they are implemented by blocking, not spinning
* Locks can also be implemented in this way
* Monitors: programming language support
 are significantly higher level
* utilize programming language support to reduce errors

