
mkfs.c

STEP ONE: GET A DRIVE
STEP TWO: ~

STEP THREE: TADA, A FILE SYSTEM



Xint & xshort
● Convert stuff to intel byte order

○ Little endian
○ Least significant bit is stored at lower address

● Representation of 0x12674592



Rsect & wsect
● Go to the “sector” a.k.a offset within the disk image 

file.
● Read/Write buffer to the sector



Winode & rinode
● Write inode to disk and read inode from disk
● Make use of

○ INODEOFF - inode offset
○ IPB - offset within block for inode
○ BSIZE - block size



ialloc
● Accept a type
● Increment `freeinode` to keep track of number of inodes
● Zero out dinode
● Write type
● Write the dinode to disk
● Return the inum



balloc
● Allocate the amount of block indicated by used
● Mark bitmap to indicate the blocks allocated are no 

longer free



iallocblocks
● Give an inode some amount of blocks (extent)



iappend
● Add content to the end of the extent of an inode



What is mkfs.c doing?
● Setup the superblock
● Allocate root directory
● Add `.`, `..`, `console`
● Loop through the user directory and add every file into 

the xk file system
● User `iappend` to update the extent storing `dirent`
● Update the bitmap using `balloc`



MACRO
INODEOFF - inode offset

IPB - offset within block for inode

BSIZE - block size



Important variables
`freeinode` - tracks the position of the next free inode

`freeblock` - tracks the position of the next free block



Debugging
mkfs.c will run during the compiling process

For print debugging:

● In line 49 of user/Makefrag, remove the redirection to 
/dev/null


