
Lab 4 Details
Even more file stuff



Admin

● Lab 4 due on the last day of instruction
○ Design doc feedback should be back by end of next weekend

Late Policy TBD



Part A: File Operations



dirent
“foo” 16

Summary

struct extent
struct extentstruct extent



Inodefile

● The inodefile is the “inodes” section on disk, which stores the table of 
inodes (struct dinode)

○ Reading from and writing to inodefile is just like reading/writing for a normal file
● 0th inode is the inodefile itself

○ Data field in 0th inode corresponds to inodes region
● 1st inode is the root directory

○ Data field is array of directory entries (struct dirent)
● icache.inodefile points to the inode file



Inodefile



icache

● Disk operation are slow
○ Thus, we have a cache of inodes

● icache.inodefile is initialized at system 
startup

● icache.inode is an in-memory cache of 
most-recently-used inodes

○ They are not in order! Use iget to search the 
cache and irelease to release the cache!

● Difference between inode and dinode
○ In memory vs on disk
○ Need to synchronize them: read_dinode 

(provided, used in locki) move data from disk to 
memory. write_dinode move data from memory 
to disk (not provided)

struct {

 struct spinlock lock;

 struct inode inode[NINODE];

 struct inode inodefile;

} icache;



Helpful functions

iget: create a cache entry for the in-memory copy of the inode, but the entry is 
empty (doesn’t synchronize with dinode)

locki: copy information from dinode to the in-memory inode cache

read_dinode: read the dinode from the disk

readi/writei: the inodefile, root directory and files are all abstracted as inode! 
You can reuse the code for readi/writei to read/write their extents.



read_dinode

● What does the function do?
○ Reads in struct dinode at index `inum` from inodefile

● Having a similar write_dinode() can be helpful (not provided in starter code)
○ When should we write dinode?



Block Operations

● We also have a cache for blocks
● bread: move data from disk to memory. Search the cache first and then 

read the block if cache is not found
● bwrite: move data from memory (cache) back to disk.
● brelease: release the cache



Extents

● Extents region - where the actual data for files in the filesystem lives 
(excluding the initial inode file)

● Extent - sequence of contiguous blocks of disk
○ When allocating an extent for a file, all blocks in the extent should be marked used in the 

bitmap even if no data is written yet
■ “Reserving” contiguous blocks for file to use



Extents



dirent
“foo” 16

Summary

struct extent
struct extentstruct extent



Bitmap

● Each block contains 512 bytes
○ Each block in bitmap represents 512 * 8 = 4096 blocks

■ (i.e., block at sb.bmapstart -> blocks 0-4095 , sb.bmapstart + 1 -> 4096-8191, etc.
○ Need to use bitmasking to mark blocks in bitmap

● Some useful macros
○ BBLOCK(b, sb) -> block number in

bitmap containing b 
● Trick: you can check 8 bits together as a byte



Bitmap Example

00000011 10011100 ……

Assume sb.bmapstart = 100

Block 101

Byte 0 Byte 1

Block 100

……

11111111 00000000 ……
Byte 0 Byte 1

Block 1 and 0 are allocatedBlock 2-7 are free

11110001
Byte 511

00011100
Byte 511

Block 4096-4104 are allocated

Block 8 is free



Part B: Crash Safety



Log API

● The spec recommends designing an API for yourself for log operations:
○ log_begin_tx(): (optional) begin the process of a transaction
○ log_write(): wrapper function around normal block writes
○ log_commit_tx(): complete a transaction and write out the commit block
○ log_recover(): log playback when the system reboots and needs to check the log for disk 

consistency
■ Where/when should this be called? (Hint: inspect kernel/fs.c)



What should log_write() do differently?

● log_write() intended to be a wrapper function for bwrite() operations
● Instead of writing the block to its location on disk, we want to:

○ write the block information to our log region
○ keep the block in memory until transaction successfully commits (performance 

optimization)

● To write to a block but keep changes in memory
○ Look into setting B_DIRTY bit for that block when calling bwrite - this will ensure the 

changes are are not immediately flushed to disk



What should log_write() do differently?

● Once all block writes in transaction have called log_write(), 
log_commit_tx() will be called

● Commit
○ Flush commit block to disk
○ Flush dirty blocks from previous log_writes to their actual location on disk

■ How?
○ Reset commit flag



Questions?
Good luck on Lab 4!




