
Lab 2 Intro
CSE451 22wi - 1/13/22

Admin

- Lab 2 design due 4/15 (next Friday)

- Lab 2 due 4/22 (two weeks from now)

- Lab 2 has a design doc. The better you fill it out, the more helpful we can be in

commenting on it, and the more prepared you will be for writing the code!
- Put design doc in your repo, similar to lab1design.
- Grading expects how details, not just what -- more than just copying from spec

Design Document

Do it BEFORE you write code

This is mainly for you to think carefully before implementing them

Include whatever design choice that will help you succeed

Knowing what to include is difficult (you probably haven’t done this before!)

You’ll learn as the quarter goes

Use lab/designdoc.md & lab1design as a reference of what should be included!

Edge cases, unanswered questions

Office hours are a good time to talk about design

Locks
Question: Why do we need them?

Spinlocks

● Disable interrupts and spin until resource is acquired
○ Prevent concurrency issues by not yielding to the scheduler until we are done

● Relevant files
○ inc/spinlock.h
○ kernel/spinlock.c

● Pros/Cons of spin locks?
○ Fast to acquire resource once it’s freed up
○ Hangs entire core while waiting
○ Xk is single-core, so nothing will ever actually spin on one of these (can’t be interrupted while holding)

Synchronization Functions

● Main API for process control: wakeup/sleep
○ Helper: wakeup1 (use it if you already hold the ptable lock)
○ sleep(void* chan, struct spinlock* lk)

■ Sets process state to SLEEPING
● i.e. won’t be scheduled to run by the scheduler

■ Sets the process’s “channel” variable (chan)
■ Yields to the scheduler, switching to another process

○ wakeup(void* chan)
■ Acquire ptable lock
■ Looks for all SLEEPING processes with the given channel (chan), wakes them up

● i.e. sets processes state to RUNNABLE

● Condition variables
○ Go to sleep using the variable’s address as channel. Signal variable change by wakeup(). When

woken up from sleep, check if condition is now true
■ If not, go back to sleep
■ while (!condition) {sleep(&var, &mylock);}

● Relevant files, inc/proc.h, kernel/proc.c

Sleeplocks

● Uses the sleep/wakeup interface from the previous slide, with &lock as channel

○ On “acquiresleep”, if the resource is unavailable, it will sleep on &lock

■ Sets state of process to SLEEPING: it will not be scheduled until awoken

○ On “releasesleep”, the code with the sleeplock will wakeup all process waiting on &lock.

■ Sets all processes sleeping on &lock to RUNNABLE: they can be scheduled
■ All waiting processes will wake up. One of them will get the lock. The rest will sleep again.

● Relevant files:

○ inc/sleeplock.h

○ kernel/sleeplock.c

● Pros/Cons?
○ Doesn’t waste CPU time waiting for slow operations (e.g. IO)
○ Process gets descheduled; more overhead

● WARNING:

CPU scheduling relies on timer interrupts, but spinlocks disable interrupts while

active.

Trying to schedule while holding a spinlock will cause a “sched locks” panic

Otherwise, control would never go back to the scheduler

Sleeplocks invoke the scheduler if a resource is unavailable

Question: how to avoid the panic?

Sleeplocks - Brief Example

Key

Runnable

Sleeping

Running

pt
ab

le

p0 p1 p2 p3 p4

Sleeplocks - Brief Example

p0 acquires lock1

Key

Runnable

Sleeping

Running

pt
ab

le

p0 p1 p2 p3 p4

lock1

Sleeplocks - Brief Example

p1 and p2 try to acquire lock1

- since p0 is holding, both go to sleep

- sleep(&lock1, lock1->lk);

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

lock1

Sleeplocks - Brief Example

p0 releases lock

- calls wakeup(&lock1), waking up p1 and p2

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

Sleeplocks - Brief Example

p1 scheduled to run

- acquires lock1 since no other process is holding

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

Sleeplocks - Brief Example

p2 scheduled to run

- sees that the lock is still being held, goes back to sleep

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

lock1

Sleeplocks - Brief Example

p2 scheduled to run

- sees that the lock is still being held, goes back to sleep

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

lock1

Sleeplocks - Brief Example

p2 scheduled to run

- sees that the lock is still being held, goes back to sleep

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

lock1

Sleeplocks - Brief Example

p2 scheduled to run

- sees that the lock is still being held, goes back to sleep

Key

Runnable

Sleeping

Running

pt
ab

le chan=
&lock1

chan=
&lock1

p0 p1 p2 p3 p4

lock1

Sleeplocks - Brief Example

● Our condition variable in this case is whether the lock

is being held
○ See the pattern: while (!condition) {sleep(&var, &mylock);}

● Condition Variables can be used for general purposes,
which weʼll see later

○ Key functions, sleep and wakeup in proc.c

excerpts from proc/sleeplock.c

Spinlocks vs. Sleeplocks, Summary

● Which should I use?

● Spinlocks
○ Fast to acquire if no contention
○ But, disables interrupts (this is specific to xk. Other systems might not need this)
○ Also wastes CPU cycles if the wait time is very long

● Sleeplocks
○ More overhead, process getting descheduled means context switch
○ But, other processes can run while this process is waiting

● Rule of thumb…
○ Fast critical sections - spinlocks
○ Long critical sections - sleeplocks

● Question: Which should you use for file table?

Curious about locks, still?

- See chapter 5 in the textbook

- Wait ‘til later in the quarter (fancier locks)

Lab 2 - Processes
IF IN DOUBT: DO WHAT LINUX DOES

fork()

● Create a new process by duplicating the calling process.

● Returns twice!
○ 0 in the child (newly created) process
○ Child’s PID in the parent
○ Question: how to do this? (We aren’t telling you here!)

● What does this entail? What needs to be created, and how do we copy parent state?
○ Need to clone all open resources

■ Files (make sure to increase reference count)
■ All memory (look into vspaceinit and vspacecopy to copy virtual memory space)
■ Data to return to the correct place (trap frame)
■ Anything else?

wait()/exit()

● wait(): Sleep until a child process terminates, then return that child’s PID.
○ Need to keep track of some data

■ Need to know parent/child relationships between processes
○ Process shouldn’t return from here until a child has exited…

■ Should put to sleep and invoke the scheduler

● exit(): Halts program and sets state to have its resources reclaimed

● What are some edge cases to consider?
○ Wait should return child’s process ID EVEN IF the child exited before wait() was called
○ The kernel and the user program share the same page table

■ Can’t clean up all data in exit()...

○ Parent should go to sleep until a child exits
○ What if the parent exits before children terminates? Or never calls wait()?

■ Need to clean up, somehow.

● For xk, looping through the process table is reasonable

Lab 2 - Pipe

pipe(pipefds)

● Creates a pipe (internal buffer) for reading from/writing to

● From the user perspective: two new files
○ One (“read end”) is not writable
○ Other (“write end”) is not readable

● In practice, allows parent/child or child/child to communicate with each other.

● You’ll want to somehow make this compatible with the read/write(fd) interface

Pipes

● A mechanism for inter-process communication (“IPC”)

● By calling sys_pipe, a process sets up a writing and reading end to a “holding area” where

data can be passed between processes

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

Abstraction of a pipe

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

File Struct
(Read only)

File Struct
(Write only)

PipeImplementation of a pipe

Pipes

● What should happen if the write end or read end are closed (by potentially multiple

readers/writers)? When can you free the buffer?
○ What happens if the buffer is full and we try to write? Empty and try to read?

■ Wait for data to be removed/added
● Spin or sleep?

■ What if all of the other endpoint type are closed already?

● Pipes should be allocated at runtime, as requested
○ What mechanisms does xk have for dynamic memory allocation to the kernel?

● Each pipe should behave like a file so we can reuse the same read() and write()
○ Need a way to determine if a struct file is an inode or a pipe

exec(progname, args)

Replaces the process’ state by executing the given program with the given arguments.

This will require you to (carefully!) set up the process’ stack memory and register state.

● This will be tricky! You’ll be using a number of vspace____ functions
○ vspaceinit for initialization
○ vspaceloadcode to load code
○ vspaceinitstack to init stack

■ vspacewritetova to write initial arguments into the stack
○ vspaceinstall to swap in the new vspace
○ vspacefree to release the old vspace

● The swapover to the new vspace can be tricky to get right!
○ Look at what vspacefree does
○ Remember the difference between copying a struct and copying a pointer

More on exec

● This fully replaces the current process; it does not create a new one
○ Often used with fork. Fork off a child as a new process; that child immediately exec()s a new program.

■ It’s a bit wasteful to copy the entire memory space in fork() if it’ll be immediately discarded…
■ For now: don’t worry about that. Naive fork is ok; lab3 will improve upon it

● Many uses
○ The shell uses fork/exec to run commands
○ Linux uses fork/exec to load new programs

■ Windows has a “launch a new process running that” function
■ Linux does not.
■ Whenever you run a new process, forks off of the root process and execs.

● Question: how do we pass arguments into the new program?

X86_64 Calling Conventions

● %rdi: Holds the first argument

● %rsi: Holds the second argument
○ (%rdx, %rcx, %r8, %r9 come next)
○ Overflow onto stack

● %rsp: Points to the top of the stack (lowest address)

● Local variables are stored on the stack

● If an array is an argument, the array contents are stored on the stack and the register

contains a pointer to the array’s beginning

Main

int main(int argc, char** argv)

Argc: The number of elements in argv

Argv: An array of strings representing program arguments
- First is always the name of the program
- Argv[argc] = 0

Main’s Stack

argc%RDI

argv%RSI

*%RSP
Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]

0 (why?)
Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

● Alignment

SZ_2G

Practice Exercise 1

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“cat cat.txt”

Practice Exercise 1: soln

2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
argv[1]
Argv[2] = NULL

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which
is 2

● RSI holds argv: the
beginning of the argv
array

● RSP is properly set to
the bottom of the
stack.

● The specific value of
the return PC doesn’t
matter (program
exits from main
without returning)

Practice Exercise 2

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“kill -9 500”

3%RDI

argv%RSI

*%RSP

Practice Exercise 2: soln

● RDI holds argc, which
is 3

● RSI holds argv: the
beginning of the argv
array

● RSP is properly set to
the bottom of the
stack.

● The specific value of
the return PC doesn’t
matter (program
exits from main
without returning)

Return PC
argv[0]
argv[1]
argv[2]

\0
“kill”
“-9”
“500”

// High addresses

// Stack grows
// down

