
Lab 3 More

Memory Management

1



Reminder

● Lab 3 design doc is due tonight

2



Today’s Agenda

● More detail on vspace and vspace functions

● Some discussion questions on lab 3

● Q&A time

3



vspace Visual Diagram

4



Vregions vs Page Tables

● Both have virtual to physical address mappings
● vspace.pgtbl

○ Used by hardware to translate virtual addresses to physical addresses
○ CR3 register holds the top level page table (i.e. vspace.pgtbl)
○ TLB caches virtual -> physical mappings

● vspace.regions
○ Portable architecture independent software representation of the address space
○ Used by kernel to track/update mappings without affecting hardware page table lookups
○ May be incomplete at times (e.g. mappings in exec())

● How do we update the page table to reflect the vspace regions?

5



vspaceinvalidate(vs)

● “Build the architecture dependent page table based on vspace information”
○ I.e. virtual mappings in vs.regions are reflected in vs.pgtbl

● Call when you’ve changed a mapping in vspace

When should you call vspaceinvalidate in Lab 3?

6



vspaceinstall(p)

● “Installs the page table into the page table register”
○ I.e. CR3 = vs.pgtbl
○ In x86-64, this flushes the TLB!

● If there were changes in the vspace, call after invalidating

When should you call vspaceinstall in Lab3? 
Can you ever get away without calling vspaceinstall?

7

https://wiki.osdev.org/TLB


Handling Page Faults in x86-64

● CR2 register holds the faulting virtual address 
○ How do you read or load a control register?
○ (look in trap.c in the default case)

● tf->err holds the exception error code
○ You can use this to determine the type of fault

8



More on Error codes

● Last 3 bits of tf->err
○ B2 is set if fault occurred in user mode
○ B1 is set if fault occurred on a write
○ B0 is set if the faulting page is mapped to a physical frame 

■ if we page fault on a page that's mapped, then it's caused by permission issues 

● What will the error code be if the page fault was from touching the stack 
region of memory?

● What about writing to a copy-on-write page?

9



Copy-on-write Fork FAQ

● How do we keep track of physical pages and refcounts?
○ Coremap! (kalloc.c)

● What vspace function to write to support COW fork?
○ vspacecowcopy (basing off of existing vspacecopy)

● What do the fields of a page (struct vpage_info) need to be after a 
copy-on-write fork?

■ fields to consider: used, ppn, present, writeable
■ feel free to add your own fields

● What happens to a page that is already read-only before COW fork?

10



More COW

● What needs to be changed in the core_map_entry to support COW fork?
○ ref count
○ access to core_map_entry should be protected

■ (hint: kalloc already has a lock for all core_map structures)

● Can the kernel cause a copy-on-write page fault?
○ Sure! E.g. accessing the user buffer during a read() system call

● Synchronization in modifying the vspace in page fault in COW fork?
■ Not needed -- current process has exclusive access to its own vspace (no 

multithreading)
■ However, the ref count on the physical page could be concurrently modified

● What can happen if a copy-on-write fork is not synchronized?
11



Helper Macros and Functions

P2V: physical addr to virtual addr

V2P: virtual addr to physical addr

PGNUM: physical addr to page number

va2vpage_info: virtual addr to vpi_info

12



Any questions?

13


