
Lab 2

Multiprocessing

1

Admin

● Problem set 3 due tomorrow (10/28)
● Fill out mid-quarter feedback form by Monday (10/31)
● Lab 2 due next Wednesday (11/2)

2

https://forms.gle/rEjPvstVgFeYpLXx6

Design Doc Peer Review (~10 mins)

● Get into groups of 2 and exchange your design docs for peer review
● Did you learn new cases you hadn't thought about?
● Is there anything you can help out for your peers?
● What are some unanswered questions still?

3

Lab2: Synchronization

● How are you protecting access to the global open file table?
● How are you making sure two readers using the same file will update its

offset correctly?

Note that you don't want your locking scheme to only allow for one process to
use the file system at a time. Processes operating (read/stat) on different files
should be able to make progress concurrently.

4

Lab2: Fork, Wait, Exit

● Fork: return twice
○ parent resumes execution by restoring registers saved in the trapframe
○ child can "resume" in a similar fashion
○ the only difference is their return value, which is stored in ??

● Wait:
○ if children already exited, no blocking needed

■ how do you tell whether a child has exited? does the check need protection?

● Exit:
○ exit as a parent = pass your children to someone else

■ why can't we do this the other way around? can child check whether its parent has
exited?

5

Process States

UNUSED EMBRYO RUNNABLE

RUNNING

ZOMBIE

SLEEPING

Fill out the process state diagram below. Draw arrows from one state to
another with the action that would result in that transition

6

Process States
Fill out the process state diagram below. Draw arrows from one state to
another with the action that would result in that transition

UNUSED EMBRYO RUNNABLE

RUNNING

ZOMBIE

SLEEPING

7

Lab2: Pipe

● Allocate room for pipe metadata and data (buffer) with kalloc()
○ Metadata = state variables for managing the pipe

● What metadata/information do you need for pipe?
○ offset to read from
○ offset to write to
○ whether the read end is still open
○ whether the write end is still open
○ # of bytes available in the buffer
○ lock and condition variables (for synchronization)

● Similar to the bounded buffer problem

8

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

File Struct
(Read only)

File Struct
(Write only)

PipeImplementation of a pipe

9

Lab2: Exec

● Fully replaces the current process; does not create a new one

● How to replace the current process?
○ set up a new virtual address space and new register states
○ switch to using the new VAS and registers
○ Open file descriptors and pid remain the same

10

Exec: Setup Vspace

● Setting up a new virtual address space
○ vspaceinit for initialization
○ vspaceloadcode to load code
○ vspaceinitstack to allocate stack vregion

■ you still need to populate user stack with arguments
■ vspacewritetova to write data into the stack of the new VAS

○ vspaceinstall to swap in the new vspace
○ vspacefree to release the old vspace

● The swapover to the new vspace can be tricky to get right!
○ Look at what vspacefree does

11

Exec: Setup Arguments

int main(int argc, char** argv)

Argc: The number of elements in argv

Argv: An array of strings representing program arguments
- First is always the name of the program
- Argv[argc] = 0

12

X86_64 Calling Conventions

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the

register contains a pointer to the array’s beginning

13

Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]
argv[argc] = NULL

Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

● Why? Alignment
● Why NULL pointer?

Convention

SZ_2G

14

\0… (padding)

Practice Exercise 1

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“cat cat.txt”

15

2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
argv[1]

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which is 2
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

16

Practice Exercise 1: Solution

\0\0\0\0
Argv[2] = NULL

Practice Exercise 2

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“kill -9 500”

17

3%RDI

argv%RSI

*%RSP

● RDI holds argc, which is 3
● RSI holds argv: the

beginning of the argv
array

● RSP is properly set to the
bottom of the stack.

● The specific value of the
return PC doesn’t matter
(program exits from main
without returning)

Return PC
argv[0]
argv[1]
argv[2]
argv[3] = NULL

“kill”
“-9”

“500”

// High addresses

// Stack grows
// down

18

Practice Exercise 2: Solution

\0\0\0\0

