
Lab 1

File syscalls

1

Agenda

● Common Questions
○ Where/how to initialize global variables?
○ What is reference count for?
○ When should a new file info struct be allocated?
○ Kernel/user memory
○ Syscall/trapframe/kernel stack

● File syscalls Deep Dive

2

Global Variables in C

3

Global variables are
automatically
initialized to 0 at the
time of declaration!

Reference Counting

4

struct cat {
 int id;
 char* breed;
}

proc 1

proc 2
proc 3

3 processes store a
reference (ptr) to the
struct cat

When is it safe to
deallocate the struct
cat?

Reference Counting

5

● Purpose of referencing counting
○ keeps track of how many references are there for the object
○ so we can know when it's safe to deallocate things!

● Reference count is specific to each struct
○ file's reference count might be different from inode's
○ everytime you store the pointer of a file struct somewhere, the refcount goes up

■ open, dup
○ everytime you remove a reference of a file struct, refcount should go down

■ close

Reference Counting

6

0 1 2 3

st
ru

ct
 p

ro
c

Inode
Struct

refcount 1

File
 Struct

refcount 1

fd = open(file, readonly)

= In use

= Available

Reference Counting

7

0 1 2 3

st
ru

ct
 p

ro
c

Inode
Struct

refcount 1

File
 Struct

refcount 2

dup(fd)

= In use

= Available

Multiple Open Calls on Same File

● Draw out the process and global open file table layout after the following:

int fd1 = open(“file.txt”, O_RDONLY);
int fd2 = open(“file.txt”, O_RDONLY);

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
File

Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y

= In use

= Available

Multiple Open Calls on Same File

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

open(“file.txt”, O_RDONLY)

= In use

= Available

Multiple Open Calls on Same File

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y
inode

“file.txt”
T_FILE

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDONLY)

● Each open call allocates a
new file_info struct

● Name lookup returns
same inode

Memory: Kernel and User mode

- Read lab/memory.md (useful for lab 3, but also to understand some parts
of lab 2)

- Each process has its own page tables that translate a virtual address to a
physical address

12

Virtual memory
for a process:

The kernel is
mapped to the
top for every
process:

Why? Are there
any risks?

13

Kernel stack

- Can also be referred to as interrupt stack
- Each process has it’s on kernel stack
- However, this is in the kernel section of the memory
- In xk, the kernel allocates one page which acts as the kernel stack during

process creation
- From kernel.proc.c:allocproc:

14

Interrupts, exceptions, syscall (review)

- Interrupts: triggered by hardware events (I/O), unrelated to the current instr
- Ex: timer interrupt, keyboard input, disk I/O completion

- Exceptions: error caused by the current instr
- Ex: divide by zero, segfault, pagefault

- Syscall: user requesting a service from the kernel
- Ex: open(), close(), read()

All 3 involve a mode switch into the kernel!

15

Trap Frame

When an interrupt/exception/sys call occurs,

There is mode switch from User -> Kernel

 However, we need to eventually move back to user space eventually

The kernel has a different $rsp, $rip and would change registers during execution

Trap frame stores all the registers into a struct so that it can be later restored
when switching to user mode

16

Review

File Descriptors - Kernel View

● Kernel needs to give out file descriptors upon open
○ must be give out the smallest available fd
○ fds are unique per process (fd 4 in process A can refer to a different file than fd 4

in process B)
○ need to support NOFILE number of open files for each process

■ each process should know its fd to file mapping

● Kernel needs to deallocate file descriptors upon close
○ close(1) means that fd 1 is now available to be recycled and given out via open

18

Allocation of File Structs

After defining the file struct, you need a way to allocate it.

You can statically allocate an array of file structs (need to support a total of
NFILE entries)

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2

File
Struct
Index

NFILE - 2

File
Struct
Index

NFILE - 1

= In use = Available
19

Global File Table

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2G

lo
ba

l
Ar

ra
y File

Struct
Index 3

File
Struct
Index 4

File
Struct
Index 5

File
Struct
Index 6

Process 1’s File Descriptor Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

fd = index into local File Descriptor Array

20

File System Functions

fileopen

Finds an available file struct in the global file table to give to the process
Hint: take a look at namei()

File
Struct
Index 0

File
Struct
Index 1G

lo
ba

l
Ar

ra
y

0 1 2 3

st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

after open

22

= In use

= Available

fileclose

Release the file from this process, will have to clean up if this is the last reference
● make sure to irelease() before deallocating the file struct

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y

after close

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

filedup

Duplicates the file descriptor in the process’ file descriptor table

File
Struct
Index 0

File
Struct
Index 1G
lo

ba
l

Ar
ra

y

0 1 2 3st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3st
ru

ct
 p

ro
c

after dup

24

filewrite and fileread

● Writing or reading of a "file"
○ Note that file is in quotes. Many things on Unix-like systems are treated as a file.

A “file” can be a real file on disk, or a console, or a pipe (lab 2)!

● Check out the functions readi and writei defined in kernel/fs.c

filestat

● Return statistics to the user about a file
● Check out the function stati in kernel/fs.c

Lab 1 Test Program Code Fragment

● What’s going on here?

● We mention the file system
is read only…

○ Why can we write to stdout?

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

G
lo

ba
l

Ar
ra

y

= In use

= Available

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
G

lo
ba

l
Ar

ra
y

inode
“console”
T_DEV

● Resolve inode for
“console”

● Find next unused slot
in global array,
allocate for inode

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
G

lo
ba

l
Ar

ra
y

inode
“console”
T_DEV

● Find next open slot in
local FD array

● Return FD to user

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
dup(0)

G
lo

ba
l

Ar
ra

y
inode

“console”
T_DEV

● Find next open slot in local
FD array

● Duplicate reference from
user’s given FD

● Return new FD to user

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
dup(0)
dup(0)

G
lo

ba
l

Ar
ra

y
inode

“console”
T_DEV

Console Input/Output

● The console device is just a special file called “console”!
● Code to handle device files is already handled for you

○ Its information is already provided for you when you open the device file.
○ Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

● I thought stdin/stdout/stderr were always available?
○ Recall that fork() copies the file descriptor table and there’s always an init process. The init

process is actually what opens the console device file, and every process inherits from init,
which is why stdin/stdout/stderr are available on non-init processes.

System calls

System Calls

● sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat
● Main goals of sys functions

○ Argument parsing and validation (never trust the user!)
○ Call associated file functions

Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
● int argint(int n, int *ip): Gets an int argument
● int argint64_t(int n, int64_t *ip): Gets a int64_t argument
● int argptr(int n, char **pp, int size): Gets an array of size. Needs size to

check array is within the bounds of the user's address space
● int argstr(int n, char **pp): Tries to read a null terminated string.

You should implement and then use:
● int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid

file descriptor (in the open file table for the process).

Questions?

