
Get to know xk
And Lab 1

*new slides; please free to give feedback
to improve these slides* - 22au

1

What is xk?

- xk stands for “experimental kernel”
- Configured to run on qemu (hw emulator)
- A simpler version of the early linux kernel
- 64 bit port of xv6

2

https://en.wikipedia.org/wiki/Xv6

Which file is in which directory?

- inc
- contains all the headers (.h) files
- Most of the structs are/will be defined in the header

files

- kernel
- Kernel source code for all the different components.
- Big chunk of the lab is based on this folder

3

Which file is in which directory? - CONTD

- user
- All the “user” files, i.e everything that is not part of the kernel
- Lab tests, shell, source code for binaries like ls, wc, ln etc.

- Lab
- Lab related docs, specs and design docs

4

Different components of the xk kernel (roughly)

- Syscalls
- File System

- file.c deals with open files management and managing the file info struct (lab1)
- fs.c deals with writing and reading blocks from disk and other helper functions (lab4)

- Processes
- fork/exec/wait implementation
- proc.c and exec.c (lab 2)

- Memory management
- writing the page fault handler (for stack, heap, and else) , trap.c (lab3)

5

Lab 1

File syscalls

6

Where to start?

https://gitlab.cs.washington.edu/xk-public/22au/blob/main/lab/lab1.md
Start by reading:

● lab/overview.md - A description of the xk codebase. A MUST-READ!
● lab/lab1.md - Assignment write-up
● lab/memory.md - An overview of memory management in xk
● lab1design.md - A design doc for the lab 1 code

○ You will be in charge of writing design docs for the future labs (which will be a bit more
comprehensive than the one provided for lab 1). Check out lab/designdoc.md for details.

7

https://gitlab.cs.washington.edu/xk-public/22au/blob/main/lab/lab1.md

Summary of Lab 1

● File info
○ struct storing info for each open file

● File descriptor
○ per-process file identifier (one for each open file) to use in syscalls

● File syscalls
○ Uses both file descriptor and file info to implement file related system calls

8

File API (UNIX, xk)

file-descriptor = open(filename)

Returns a per-process handle to be used in subsequent calls (implemented as a C int)

Shell pre-assigns stdin, stdout as file descriptors (0, 1)

read/write(file-descriptor, buffer, numBytes)

Read or write numBytes into/out of buffer, changes position in file

file-descriptor = dup(file-descriptor)

Make a new file descriptor, copy of the previous one (used in shell)

close(file-descriptor)

We’re done with using this file descriptor
9

More on the UNIX File API

File descriptors are used for all I/O, eg, network sockets, pipes for interprocess
communication

Applications use read/write regardless of which thing it is reading/writing to

File descriptors are per-process but can be passed between processes

Important for how fork/exec and the shell works

Examples: ls | wc ls > tmpfile wc < tmpfile

Kernel should not trust file descriptor (might not be previously opened, etc.)

App should not be able to crash kernel

10

File Syscalls

You will need to implement a number of file related system calls.

Implementing syscalls consists of two steps:

- parsing and validating syscall arguments
- see implemented syscalls for reference (sysfile.c)
- argptr, argstr, argint, what do these functions do?

- perform the requested file operations
- need to write your own file operations using the provide inode layer

11

File Descriptors - Kernel View

● Kernel needs to give out file descriptors upon open
○ must be give out the smallest available fd
○ fds are unique per process (fd 4 in process A can refer to a different file than fd 4

in process B)
○ need to support NOFILE number of open files for each process

■ each process should know its fd to file mapping

● Kernel needs to deallocate file descriptors upon close
○ close(1) means that fd 1 is now available to be recycled and given out via open

12

File Information

The current xk file system only implements a primitive
inode layer, so you need to create a file abstraction
yourself. We need to track the following information for
each open file:

● In memory reference count
● A pointer to the inode of the file
● Current offset
● Access permissions (readable or writable)

File Struct

13

Allocation of File Structs

After defining the file struct, you need a way to allocate it.

You can statically allocate an array of file structs (need to support a total of
NFILE entries)

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2

File
Struct
Index

NFILE - 2

File
Struct
Index

NFILE - 1

= In use = Available
14

Inode Layer

namei() = opens an inode in memory

readi() / concurrentreadi() = read data using this inode

writei() / concurrentwritei() = write data using this inode

File layer provides “policy” for accessing files, inode layer provides “mechanism”
for reading/writing

15

fileopen

Finds an available file struct in the global file table to give to the process
Hint: take a look at namei()

File
Struct
Index 0

File
Struct
Index 1G

lo
ba

l
Ar

ra
y

0 1 2 3

st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

after open

16

filedup

Duplicates the file descriptor in the process’ file descriptor table

File
Struct
Index 0

File
Struct
Index 1G
lo

ba
l

Ar
ra

y

0 1 2 3st
ru

ct
 p

ro
c

File
Struct
Index 0

File
Struct
Index 1

0 1 2 3st
ru

ct
 p

ro
c

after dup

17

Global File Table

File
Struct
Index 0

File
Struct
Index 1

File
Struct
Index 2G

lo
ba

l
Ar

ra
y File

Struct
Index 3

File
Struct
Index 4

File
Struct
Index 5

File
Struct
Index 6

Process 1’s File Descriptor Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3 NOFILE

st
ru

ct
 p

ro
c

fd = index into local File Descriptor Array

18

