Operating Systems

Section 1- C, GDB, Course Intro
9/29/22

Overview

1) Info about labs
2) Brief recap of 351/333 topics

3) Tools for debugging
4) TA procedure: Office hours, discussion board

5) Misc. info

Labs

There are 4 labs:

File System Calls (Coming out next Monday!)
Processes and Pipes

Memory

File System

HPWN -

avg hrs (difficulty*)

40

30

20

10

Lab Difficulty*

labl

lab2

lab

lab3

lab4

-&— CSE 451
=-@— CSE 3XX

Why should you start Lab 1 early?

- It takes time to get used to gemu and xk

- Create your own file info struct
Have to figure out what fields are needed
- Compile Time Issues

- Getting comfortable with gdb

Time to complete varies between 5 hrs and 20 hrs

Part 1: The C Programming
Language

What Was C, Again? A Brief Recap

To jog your memory, not to re-teach C. Skimming over 351/333 isn't a bad idea

- Functions & Structs (they exist, and are about as complex as C gets)

- Pointers & Memory (to * or not to *, that is a question)

- Forward Declarations & Header files (working with multi-file projects)
- The Preprocessor (and how it relates to header files)

- Assembly

Functions (code to call), Structs (bundle of state)

// function, like in most programming languages
int sum3 (int x, int y, int z) {
return x + y + z;

}

// not a class: only public fields, no inheritance or methods
// typedef lets you refer the struct as “struct Point2D”, or just “Point2D”
typedef struct Point2D {
double x;
double vy;
} Point2D; // These names happen to match, but they don’t have to

double dot (struct Point2D pointl, Point2D* point2) {
return pointl.x * point2->x + pointl.y * point2->y;

Pointers & Addresses

e & Gets the address of where something is stored in (virtual) memory
o a32/64 bit (4/8 byte) number
o you can do arbitrary math to a pointer value (might end up with an invalid address......)

e *:Dereferencing, “give me whatever is stored in memory at this address”.
o dereferencing invalid addresses (nullptr, random address) causes a segfault!

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

void increment

*ptr
X 3
increment

*ptr

X

ptr

«— Pass in a pointer: the address at which some int is stored
*ptr gets the value stored at the address stored by ptr
So we assign to the memory at ptr’s address:
“whatever was there before + 1”
The pointer (address) is passed by value: “*ptr *ptr
” only changes the local “ptr” variable

«— Use the address at which X’ resides in memory

10

Pointers & Addresses

void class_string(char** strptr) {

*strptr = "class";
}
char str[6] = "hello"; // why 62
char* str2 = str;

class_string(&str2);

// what would printf (str2) output?

11

Pointers & Addresses

void random coordinate (int* x, int* y,

*x = rand() % 100;
100;
100;

*y = rand()

o

*z = rand()

o°

int x, y, z;

random coordinate(&x, &y, &z);

int* z) {

12

Function Ordering

- Ccompiler is single pass
- If you define function A, then function B, the compiler doesn’t know about B until it's done reading A
- This will have a compiler error: when reading get4 () 's implementation, get3 () is unknown

int get4d () { get3() + 1; }

int get3() { 3; 1}

13

Solution: Forward Declarations, Header Files

- The solution? Declare things before defining them

int get3(); // There will be a function get3 with this signature
int getd4(); // Also one called get4()

int getd4() { return get3() + 1; } // Now this is okay: we
promised the compiler that get3() will exist
int get3() { return 3; }

- We end up putting our forward declarations in a header file so that we know everything is
declared first. As a bonus, other code can reference the header file to use functions it declares

Forward Declarations of Global Variable

/* === header.h === *
extern int var; // declare a variable without allocation

* === program.c === *
#include "header.h"
int var; // define (allocate) a variable

int get() {return var;}

/* === another program.c ===
#include "header.h"

// Don't define the variable again! Variable allocated in "program.c"
int get2() {return var * 2;}

Header Files & The Preprocessor

Now we have two problems:

1. Implementations don't have the forward declarations anymore (we

moved to a new file)
a. Solution: The Preprocessor #include in effect, replace
this line with the entire content of MyHeader.h

2. Duplicated declarations: if the header file is included in multiple places,
we can end up declaring the same function signature multiple times

(since #include is copy-paste)
a. Solution: Header Guards, everything between the ifndef and endif is only
expanded once

// mymath.h
MYMATH
MYMATH

int get4

int get3

16

Preprocessor Macros to Know

#include: embed the given file here. As in, copy-paste the whole thing.

#define A (or #define A B): register A as a known symbol. If B is given, replace all occurrences of A with B
-> Used for constants! (e.g. “#define SIZE 20”)
-> Also used for macros. e.g. “#define MAX(a,b) (a) > (b) ? (a) : (b)”
This is a find/replace operation. Be careful of the operator precedence!

#if ___/#endif : Only include the code between the #if and #endif if the condition is true

#ifdef ___ /#ifndef ___ /#endif: Only include the code between this and endif if the symbol is/isn’t
defined

17

Part 2: Tools For Debugging

Old Friend: Printf

Prints are very useful for simple debugging:
e How far have we reached in a function?
e How many times did we meet a condition?
e Function invocations & its parameters

However, sometimes prints are not enough:
e bugs in your code can impact printfs in unexpected ways
e printf grabs a console lock that may make the bug difficult to reproduce
e printf uses a buffer internally, so prints might be interleaved
e can't printin assembly

19

New Friend:

This is a systems class and you'll be doing a LOT of debugging
Also lots of pointers.
Really, the pointers are the main reason for the debugging

20

GDB commands to know: a non-exhaustive list

gdb path/to/exe

run: start execution of the given executable

n: run the next line of code. If it's a function, execute it entirely.
s: run the next line of code. If it's a function, step into it

c: run the rest of the program until it hits a breakpoint or exits

bt: get the stack trace to the current point. Can be ran after segfaults!
up/down: go up/down function stack frames in the backtrace

21

GDB Example

#include <stdio.h>

void increment(int

if (ptr == NULL)
exit(1l);

*xptr += 1;

int main() {
int a, b, c;

printf("starting value for a: %d, b: %d, c: %d\n", a, b, c);
increment(a);
increment(a);

increment (NULL);
return 0;

Reading symbols from a.out...done.

(gdb) b main

Breakpoint 1 at 0x40060d: file example.c, line
(gdb) b 5

Breakpoint 2 at 0x4005e9: file example.c, line 5.
(gdb) run

Starting program: /homes/iws/jlli/a.out

Breakpoint 1, main () at example.c:
printf("starting value for a: %d, b: c: %d\n", a, b,

) n
ting value for a:

$
(
$
{
S

14

(gdb) c

Continuing.

Breakpoint 2, increment (ptr=0x@) at example.c:5
5 exit(1);

(gdb) bt

#0 increment (ptr=0x@) at

#1 0x0000000000400634 in main
(gdb)

c);

22

General Debugging Tips

- Get familiar with GDB

- Stepping through line by line and printing out variables is slow, but will find the bug.
- Make sure you know what the code is supposed to do first

- There are a lot of complicated systems, with limited framework. Unlike 333, this isn't fill-in-the-blank
- Should still use printfs

- It can be an efficient way to find what section of code is wrong so your GDB debugging can be more
focused

- GDB step by step tutorials online
- GDB cheat sheet

You will get a chance to practice with GDB in Lab 1:)

23

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Part 3: Procedure

Regarding office hours

There are a /ot of strange ways you can break xk

Unlike in other classes, there are many functional ways to structure your code (no one right answer)
Going through GDB in office hours is way too slow

e Please do preliminary debugging as far as you can before office hours, so we can give useful advice
e For particularly weird issues, we might not be able to solve your bug within available time constraints

25

Discussion Board

If you've tried debugging and have come up against a wall that would take too long for office hours,
consider posting on the discussion board.

Include DETAILS

- What is the problem

- Which methods does it manifest in

- What does work

- What debugging have you tried, & what did you find

Our time is limited and there are a lot more students than TAs, so our ability to be helpful is directly
influenced by the quantity of useful debugging information you provide.

26

Reminders

e Find alab partner and fill out the form by next Monday
e Lab comes out next Monday
e Readings due every class

27

Questions (C, GDB, the class, your TA, etc)

28

