
Operating Systems

Section 1 - C, GDB, Course Intro
9/29/22

Overview

1) Info about labs
2) Brief recap of 351/333 topics
3) Tools for debugging
4) TA procedure: Office hours, discussion board
5) Misc. info

2

Labs

There are 4 labs:

1. File System Calls (Coming out next Monday!)
2. Processes and Pipes
3. Memory
4. File System

3

4

Why should you start Lab 1 early?
- It takes time to get used to qemu and xk
- Create your own file info struct

- Have to figure out what fields are needed
- Compile Time Issues
- Getting comfortable with gdb

Time to complete varies between 5 hrs and 20 hrs

5

Part 1: The C Programming
Language

6

- Functions & Structs (they exist, and are about as complex as C gets)
- Pointers & Memory (to * or not to *, that is a question)
- Forward Declarations & Header files (working with multi-file projects)
- The Preprocessor (and how it relates to header files)
- Assembly

What Was C, Again? A Brief Recap
To jog your memory, not to re-teach C. Skimming over 351/333 isn’t a bad idea

7

// function, like in most programming languages
int sum3(int x, int y, int z) {
 return x + y + z;
}

// not a class: only public fields, no inheritance or methods
// typedef lets you refer the struct as “struct Point2D”, or just “Point2D”
typedef struct Point2D {
 double x;
 double y;
} Point2D; // These names happen to match, but they don’t have to

double dot(struct Point2D point1, Point2D* point2) {
 return point1.x * point2->x + point1.y * point2->y;
}

8

Functions (code to call), Structs (bundle of state)

Pointers & Addresses

● &: Gets the address of where something is stored in (virtual) memory
○ a 32/64 bit (4/8 byte) number
○ you can do arbitrary math to a pointer value (might end up with an invalid address……)

● *: Dereferencing, “give me whatever is stored in memory at this address”.
○ dereferencing invalid addresses (nullptr, random address) causes a segfault!

9

** A decent chunk of bugs are basically passing pointers when you shouldn’t and vice versa**

Pointers & Addresses

void increment(int* ptr) {

 *ptr = *ptr + 1;

}

int x = 3;

increment(&x);

// x is now 4

← Pass in a pointer: the address at which some int is stored
*ptr gets the value stored at the address stored by ptr
So we assign to the memory at ptr’s address:
 “whatever was there before + 1”
The pointer (address) is passed by value: “*ptr = *ptr + 1;
” only changes the local “ptr” variable

← Use the address at which ‘x’ resides in memory

10

Pointers & Addresses

void class_string(char** strptr) {

 *strptr = "class";

}

char str[6] = "hello"; // why 6?

char* str2 = str;

class_string(&str2); // what would printf(str2) output?

11

Pointers & Addresses

void random_coordinate(int* x, int* y, int* z) {

 *x = rand() % 100;

 *y = rand() % 100;

 *z = rand() % 100;

}

int x, y, z;

random_coordinate(&x, &y, &z);

12

Function Ordering

- C compiler is single pass
- If you define function A, then function B, the compiler doesn’t know about B until it’s done reading A

- This will have a compiler error: when reading get4()’s implementation, get3() is unknown

int get4() { return get3() + 1; }

int get3() { return 3; }

13

Solution: Forward Declarations, Header Files

- The solution? Declare things before defining them

14

int get3(); // There will be a function get3 with this signature
int get4(); // Also one called get4()

int get4() { return get3() + 1; } // Now this is okay: we
promised the compiler that get3() will exist
int get3() { return 3; }

- We end up putting our forward declarations in a header file so that we know everything is
declared first. As a bonus, other code can reference the header file to use functions it declares

Forward Declarations of Global Variable
/* === header.h === */
extern int var; // declare a variable without allocation

/* === program.c === */
#include "header.h"
int var; // define (allocate) a variable

int get() {return var;}

/* === another_program.c === */
#include "header.h"

// Don't define the variable again! Variable allocated in "program.c"
int get2() {return var * 2;}

15

Header Files & The Preprocessor
Now we have two problems:

1. Implementations don’t have the forward declarations anymore (we
moved to a new file)

a. Solution: The Preprocessor #include “MyHeader.h” in effect, replace
this line with the entire content of MyHeader.h

2. Duplicated declarations: if the header file is included in multiple places,
we can end up declaring the same function signature multiple times
(since #include is copy-paste)

a. Solution: Header Guards, everything between the ifndef and endif is only
expanded once

16

// mymath.h

#ifndef MYMATH

#define MYMATH

int get4();

int get3();

#endif

Preprocessor Macros to Know

#include: embed the given file here. As in, copy-paste the whole thing.

#define A (or #define A B): register A as a known symbol. If B is given, replace all occurrences of A with B

-> Used for constants! (e.g. “#define SIZE 20”)

-> Also used for macros. e.g. “#define MAX(a,b) (a) > (b) ? (a) : (b)”

This is a find/replace operation. Be careful of the operator precedence!

#if ___ / #endif : Only include the code between the #if and #endif if the condition is true

#ifdef ____ / #ifndef ____ / #endif: Only include the code between this and endif if the symbol is/isn’t

defined

17

Part 2: Tools For Debugging

18

Old Friend: Printf
Prints are very useful for simple debugging:
● How far have we reached in a function?
● How many times did we meet a condition?
● Function invocations & its parameters

However, sometimes prints are not enough:
● bugs in your code can impact printfs in unexpected ways
● printf grabs a console lock that may make the bug difficult to reproduce
● printf uses a buffer internally, so prints might be interleaved
● can't print in assembly

19

New Friend:

GDB
This is a systems class and you’ll be doing a LOT of debugging

Also lots of pointers.
Really, the pointers are the main reason for the debugging

20

GDB commands to know: a non-exhaustive list
gdb path/to/exe
run: start execution of the given executable
n: run the next line of code. If it’s a function, execute it entirely.
s: run the next line of code. If it’s a function, step into it
c: run the rest of the program until it hits a breakpoint or exits

b _____: set a breakpoint for the given function or line (e.g. “b myfile.c:foo” or “b otherfile.c:43”)
bt: get the stack trace to the current point. Can be ran after segfaults!
up/down: go up/down function stack frames in the backtrace
(r)watch _____: set a breakpoint for the given thing being accessed
p _____: print the value of the given thing
x _____: examine the memory at an address. Many flags

21

GDB Example

22

General Debugging Tips

- Get familiar with GDB
- Stepping through line by line and printing out variables is slow, but will find the bug.

- Make sure you know what the code is supposed to do first
- There are a lot of complicated systems, with limited framework. Unlike 333, this isn’t fill-in-the-blank

- Should still use printfs
- It can be an efficient way to find what section of code is wrong so your GDB debugging can be more

focused
- GDB step by step tutorials online
- GDB cheat sheet

You will get a chance to practice with GDB in Lab 1 :)

23

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Part 3: Procedure

24

Regarding office hours
● There are a lot of strange ways you can break xk
● Unlike in other classes, there are many functional ways to structure your code (no one right answer)
● Going through GDB in office hours is way too slow

● Please do preliminary debugging as far as you can before office hours, so we can give useful advice
● For particularly weird issues, we might not be able to solve your bug within available time constraints

25

Discussion Board

If you’ve tried debugging and have come up against a wall that would take too long for office hours,
consider posting on the discussion board.

Include DETAILS
- What is the problem
- Which methods does it manifest in
- What does work
- What debugging have you tried, & what did you find

Our time is limited and there are a lot more students than TAs, so our ability to be helpful is directly
influenced by the quantity of useful debugging information you provide.

26

Reminders

● Find a lab partner and fill out the form by next Monday
● Lab comes out next Monday
● Readings due every class

27

Questions (C, GDB, the class, your TA, etc)

28

