
10117

Agenda
- Threads Interleaving

g.
readxtoareg

. zinstr .

- hooks !
→ add Itoreg

min : miteregtox
1

ti -12
readxlo)

reading

add ILD

write ltox

0add ILD

mteLtoX .

Nondeterministic

(
basedonthesdredwliy-tlpr9-cztbntogetiou.rs

readx=o_
order) execute too iteration

write 7=100

#

g, ,µµ
.

aaayg.mg .

Race conditions
→ changing

behaviors
mim -4

execute too iterations

based continuing 7--100 .

or ordering
-

How to get 2 ?

ti -12

-
readxlo]

execute99 ikr .
write -0=99

add Itoreg
writeLtox

read -8--1

exeurteto

TE 20° completion
writes -400

add Lteteg
unisex-2

Problem : read & update variable might be interrupted .

common if l flag> { < do something > modify flag }
pattern

Too Much Milk

Goals = ① If there's nomilk , someone gets milk

② No more than 1 milk in the fridge .

IRoommate.tt-1 |RoommaHB=
goals ✓

if Laomilk) {
if Laomilk) { goal 2 ×

buy milk;

buy milk; }
}

Attempt 2

|RaommateA= |RommateB=
iflno milk > {

it bro milk> {

iflno note> {

buy milk ;
}

leave note ;
}

buy milk ;
goal I ✓3
goal 2 ×

Attempts
t.Rommate.AT-IRwmmateB-fp.es/bibitCmomik> {

.

check fridge if not locked
lockthefidge . ifcnomilk> {actually

wore? gobnym.tk buy milk;
3 }

☆ We need to have exclusive access to the fridge when

performing operations related to the fridge [see
neat

pages

Too MuchMilk W/ Locks

FAE e.ie?iiii:i--
flock the fridge

section { ifcnom.lk
) only one personbrkisa

buym.pe;]
with"

synchronization
#↳ milk)

buy milk ; has access
to

Pini"
"

unhook the fridge)ᵗʰᵗiᵈ
"

at .my timeunlock the fridge

☆ Don't put everything ☆ Accessing shared variables need
in the critical section ! protection ! Call shared var ?]

Lodge
→ API = acquire 1) ,

released

→ Mechanism to enable critical section

→ Lock should provide i at a time

① Mutual Exclusion : only one thread can access critical
section

mum

get in

②Progressing if no one is in the critical section, someone
cant

③Boundedwaitingin there's an upper
bound to your waiting

↳ often not guaranteed by most locks , cause it's
hard to provide .

2 Types of looks

① Spin locks

spin in a loop→ busy waits until you can grab the book
trying

toFab__
the lock . → relies on an atomic read modify wite instr (test& set)
(consumes
CPD [test&set : a single instr that takes a memory

address,

checks if the valueat adder is 0 , if so ,
sets

special instr . that
to 1 and returns the value read]

guarantees all
these steps

are done ☆ in this case the value indicates whether the look

in 1 instruction is free or not ! if multiple threads call test&set

only one of them will be able to set the value
to1
,
the rest will fail .

→ release sets the value to 0 .

② Sleep look / Mutes
→ sleeps/blocks until you can grab the look
→ needs to keep track of threads waiting for the

lock

→ wake up a waiter on release

☆ won't be scheduled while waiting for the
lock !

trad-e-fsbtwnpibs.IE
spin look sleeplock context

→ blocks while waiting (switch→ wastes CPU while waiting involved

→ what if there are lots of threads waiting ?
→ what iflook is released very quickly ?

☆ Places where you can't sleep = scheduler, interrupt handler .

