
10110 Agenda = Fork /exec
,
wait , process

Fork / Exec

- Why ?
→ simple , fork 1) takes no argument. inherit enñronmentssexeekeepsthe
→ use case : shell redirection l ls > file txt)

- fork 1) , close stdovt , open file . txt
, exec Els

"

)

- Problems
- copy the entire VAS is expensive!

↳ need to allocate physical memory , set up the page table,
and copy over all the content .

Very Expensive !

- Cow Fork
• share the same physical memory for as long as possible .

☒÷÷÷¥¥section

Parent VAS memory
☆
allocate

memory ' write -

make
the copy

on

→ So how do we detect mites ?

• mark pages as read only , write

µ

mu then cause an exception >satin
of physical

make the copy when handlingParent VAS memory the exception L page fault

? How to identify cow pages vs
actual read only page .

→ Another variant = vforkl)
• create a new process and let

it temporarily execute in parent 's
VAS

, until it exits or calls exalt

•

NIECE ! Alsono¥É .

Faster than how Fork dangerous ! child

bk no need to setup its can modify parent's
own pagetable during fork memory after vforkc)

⇒ Additional Problem with fork
• semantic of fork is implicit inheritance
→ simple , but difficult -6 add new services

→ not all services have a dear way of inheritance , notmodular .

Alternatives : SpawnD , Chanel)
.

Wait =

"

wait for a child to exit ☆ kernel needs to trade
↳ waitpid : -1 any child parent child relationship.

pid , specific child .
- Implementation

① In exit1) , child needs to indicate its exiting status

② child needs to free resources like its VAS , file descriptors
→ How about PCB & kernel stack ?

↓ ↳ can't befreed by child , cause
can't free , otherwise child is using it to execute

in

the kernel .
parent doesn't know child 's status /state

③ parent waits & reclaims the rest of child 's resources .

→ Does the parent have to call wait ?

shell = foreground (waits on) , background& jobs
(doesn't wait!)

→ Who reclaims resources for unwaited children ?

☆ init process adopts alleᵈ children !

↳ the first process , L parent exited w/out waiting for children
started by the kernel during boot , creates many more processes
according to some config files (starts ssh , shell in]

Proiesslommunication
• Files

• Interpncess Communication GPC)
→ signals

• Shared memory
• Sockets

• Pipes
→ pipe) returns 2 fds = read end fd & writeend fd .

→ implemented as a kernel
butter .

→ shell usecase = Is I grep
"

a

"

pipe

Tplf
→ 0s defines a set of signals (integers> for processes to send & recv

→ send via

kill Lpid , Sig)

→ rear via
ctvlc

① default handlers

from the OS

② custom installed

handlers

eg .

shell 's Sigint handler Ctrl Z

forwards the signal
to foreground process

