
11(30 OS Structures
How can we make Kernel
more reliable?

0Modularize it so that

&rosin tonessMoserinte S
when one component fails
theentire Kernel doesntcrash

⑧ Use programming languages
Processes (Virtual with stronger promises.Scheduling Memory mode

-> lust guarantees memory
File System Networks Device safety (no data races)

Drivers

Howdo we isolatefault foreach
-> so farall the OS components
we've learned runs in Kernelmode component? Process is a unit
- OS =Kernel offault domain, so maybemore
me

monolithic Kenel
each component into theirown

I allcomponents share the same
userprocess!

address space a same failure domain

*co,2 SA Whatare somechallenges -
if we more an OS componentessforon toceas user
into a userprocess? mode

1). Availability
Processes (Virtual Kernel

-> What if the is process mode
terminates? no onecan I Scheduling Memory
use filesys anymore? *anism Networks DeviceI

2). Communication
--

Drivers

-> How do we request service ↳from the is process? JPC?
↳ lots ofJPL cando thisfor otherOS components as well!

3)Access Perision =highoverhead -> this approach is called microkemel-
-> Access to certain Hostill requires
usto be in theKernelmode! keeps the Kemel

small

↳ needs both a kernelpart for priviledged access &implement
most

& a userprocesspart for policies & designs
OS components in

use

space.

https://research.google/pubs/pub48630/

Example ofMicokernel inuse: Google's snap

#

Newte

~

-> based off of Linux, moves network stack into a userspace process!

