1119 Eviction wrap up \& Storage devices
$L R U \Rightarrow$ clock Clock doesn't consider the cost of existing frames.

\rightarrow clean copy on disk (code page, unchanged data)
Second Chance Enhanced Clock
\rightarrow access bit, dirty bit (1 if mitten to)
$\rightarrow A, D$
00 (if has nit bemacuessed recently,
it's a cleam-poge)
10 (clear the aces (0,4)
01 (clear the dirty bi, nave on)
11
(dirty page (int)
(clear access bot 2 maven)

Storage Deices (1/0 Devices)
\rightarrow persistent (nonwlafile)
\rightarrow hard drive / spinning disk (HDD)

- low cost (10-20\$per TB), large capacity
- physical moving parts, slow access (10-20ms)
\rightarrow Solid state dire (SSD)
- higher cost ($3 x$ disk, $60-100 \$$ per TB), large capacity
- no physical moving parts, Ms scale access latency (50-100 Ms)

Disk Anatomy
\rightarrow sector addressable (unit of read/minte)
Is 512 bytes
\rightarrow has engr correcting code.
disk
read steps.
(1) Kernel send the request (ide.c, iderw)
(2) disk find right platter \& surface
(3) move arm to track, wait for desired sector to be under head
(4) disk head reads et transfers data back to the lcemel.

Disk Performance
tot time
for a request $=$ seek time + rotation time + transfer time (arm to track) (sector under (data read/urite)
1). Seek time $=1-20 \mathrm{~ms}$ depending on how for to seek ($\begin{gathered}\text { let's say } 10 \mathrm{~ms} \\ \text { on average }\end{gathered}$)
2). Rotation time: specified as RPM, eg. 7200 RPM (assume it tales \rightarrow need to convert to ms per rotation $\approx 8.3 \mathrm{~ms}$ per rotation half a notation for the desired sector to be in the right place, 4 ms)
3). Transfer time: specified as dish bandwidth, eg. $100 \mathrm{MB} / \mathrm{s}=100 \mathrm{~B} / \mathrm{us}=5 \mathrm{us}$ per $=0.005 \mathrm{~ms}$

Sequential vs. Random access

Access 10 consecutive sectors \# of seek? 1

$$
10 \mathrm{~ms}+4 \mathrm{~ms}+0.005 \times 10=14.05 \mathrm{~ms}
$$

Access 10 random sectors \# of seeks? 10

$$
10 \times 10+4 \times 10+0.505 \times 10=140.05
$$

Access pattern matters!

Disk Scheduling

- reorder 10 requests for better performance
- shortest seek time first
\rightarrow Sere the request with the shortest seek time next (closest $\left.\begin{array}{l}\text { track }\end{array}\right)$
\rightarrow stanation!
- Elevator/scan family (SCAN, CSCAN, R-CSCAN)
\rightarrow SCAN: arm moves from inner most to outermost, the outermost to inner most, sening request along the way.
\rightarrow CSCAN = arm moves from inner most to outer most, once it reaches the end, moves back to inner most $\&$ stent again
\rightarrow R-CSCAN: takes rotation delay into account

