
10126 Deadlock

& performance
single took us . Multiple locks
→ single lock : simple , coarse (protects

thewhole systems , poor concerning
→ Multiple locks : more complex , fine-grained (protects specific data structure] ,

more concurrency (more things can be scheduled) , betterperf.
Problems

wl

Multiple
locks
Thread 1 Thread2

(copy from directory A to B) (copy from directory B toA)

. acquire LA - locks; . acquire (B - locks;

acquire LB - lock) ; acquire L A - lock) ;

☆ Deadlock : cycle of waiting amongst threads, where each thread waits for
thread in the cycle to take some actions

Nested Waiting Deadlock Example
-12

pipe- readu{ th pipe_write) {
acquire global_ f-table _ locks's

µ acquire (global -ftabletock 's
↓

~ can't

acquire Lpipe - lock>;acquirelpipe_lode5sa@rewhileL.us
} re-releases signal (pipe); cant

waitlpipe, pipe-10k¥ release (pipe- locks;
make papers

}
to signal reader

released global _ ftablelodejrelease (pipe -lock);
released global_ftable_ Lock); }

}

☆ Can end up with
deadlocks with condition variables

& even if you aquhebrks.in the same
order .

Dining Philosopher
g philosophers lead

needs 2

chopsticks to eat)
5 chopsticks

Necessary (but not
sufficient

Conditions for deadlock

① Bounded Resources
↓

② No preemption
↑

③ Hold& wait

←
⑧ Circular wait

Deadlock Prevention

→ structure the program so that one of the necessary conditions won't bemet

Breaking :
① Bounded Resources
→ addmore chopsticks

② No preemption
→ take away

a chopstick from aphilosopher
③ Hold & Wait
→ release the chopstick whilewaiting
for another

④ Circular wait

→ even # philosophergrabs right first
then left, odd# does the opposite .

In thekernel context -_
→ lock ordering : all threads acquire→ change global -Stable lockto individual file into lock

→ try -wiki) to see ifyou can grab it , release existing
locks in the same order

locks and try again if some locks aren't free .

Deadlock Avoidance

→ execution/scheduling strategy to avoid getting deadlock
→ requirement = know what resources and maximum resources each

thread needs

covercommitted)

may get
into a deadlock
↑ state depending

on future
requests

Banker's Algorithm
L details in thebook)

there is a way to serve
all requests safety Lno chance ofdeadlock

]

Dining Philosopher (with Deadlock Avoidance)

→ 5 philosophers
→ 1 kitchen fairy

3 4
5

5 chopsticks

¥ ¥ ,

¥ %
His
¥4I&xxÉzeµ⑦d-I

are

possible that <
one philosopher figured
outhowto eat w/ 1 chopstick

