
10121 acquire) ;acquired >
Agenda while ! condi# { signal it's
- co Review

wait > release) ;
- Bounded Buffer Problem .

3
released> :

condition Variables .

- put threads to sleep with acondition might be true

- APIs : ⑥ wait = put thread to waking /sleep , release
look

✓② signal : wakes up one thread from Watts
list .

"
"% "

✓③ broadcast : wake up everyone waiting on
that condition .

N "

L
wakeuplt

Rules for using locks & Us

less
wasteful

① Consistent structure

② Use Cvs & locks .

→ don't busy wait or sleepC) [Syscall sleep]

"%
""
&

③ Acquire look at beginning& release at the end .

④ Hold lock while operating on Ws .

⑤ Always
wait in a white loop

→ MESA us .

Hoare semantics

Bounded Buffer Problem

#_É fixed size buffer

Producer : produce item and put into an empty shot ,
blocks if no room to put item (buffer is full]

Consumer : consume item from a slot , blocks if no item to consume

starter code

char buffer [100] -

,

int read -ofs --0 ; 11consumer reads here
int write

-ofs - o; 11producer writes here
int count =o; 11 # of items in the buffer .

function produceC) { ? } function consume 2) { ? }
.

.

Forinash synchronization
V char buffer 'uoo] ; buffer_ lock 's

int read -01-5--0 ; /llonsumer reads here notfull -Wi
int write

-ofs - o; I/producer writes here
notempty-w.intcount -_o ; 11 # of items inthebuffer .

function produce 1) { function consumed){
butter- lock . acquire) ; buffer-lock . acquire);
while chant == buffer. size> { while Lwunt==o> {

notfuel- iv.waits ; notempty-w.war.to;
} 3
I/ there iswomtomitenow llthereisdatatoreadnow
bufferswrite-Ofs] -- data;data-buffercread-ofs-iwn-te-ofs-lm-te-ofs.tt>% buffer . size; tead-ofs-xead-ofs-i-D%baffer.si-oé,
count -4; count--y

notempty-w.sigaal.tt :& potful- a. signal) 's ☆
buffer

_
look .tl/easeL)jbutfer-6ck.re1easeL7;

} }

