
Lab 3 Details
CSE 451 21wi

Admin

● Lab 3 due 2/22

Today’s Agenda

● More detail on vspace and vspace functions

● Some discussion questions on lab 3

● Hopefully, some time at the end for open questions

vspace Visual Diagram

vregions vs Page Tables

● Both have virtual to physical address mappings
● vspace.pgtbl

○ Used by hardware to translate virtual addresses to physical addresses
○ CR3 register holds the top level page table (i.e. vspace.pgtbl)
○ TLB caches virtual -> physical mappings

● vspace.regions
○ Portable architecture independent software representation of the address space
○ Used by kernel to track/update mappings without affecting hardware page table lookups
○ May be incomplete at times (e.g. mappings in exec())

● How do we update the page table to reflect the vspace regions?

vspaceinvalidate(vs)

● “Transforms a vspace into the architecture dependent page table”
○ I.e. virtual mappings in are reflected in
○ Git analogy: commit vspace changes to the page table

● Call when you’ve changed a mapping in vs.

Pop Quiz: When will you be calling in Lab 3?

vspaceinstall(p)

● “Installs the page table into the page table register”
○ I.e. CR3 =
○ In x86, this flushes the TLB!
○ Git analogy: pushes your committed changes to the TLB/CR3

● If there were changes in the vspace, call after invalidating

Pop Quiz: When will you be calling in Lab3? Can you ever get
away without calling ?

https://wiki.osdev.org/TLB

Handling Page Faults in x86-64

● CR2 register holds the faulting linear address (but since virtual paging is
turned on, this is the virtual address)
○ How do you read or load a control register?
○ (look in trap.c in the default case)

● tf->err holds the exception error code
○ You can use this to determine the type of fault

● More info: https://wiki.osdev.org/Exceptions#Page_Fault

https://wiki.osdev.org/Exceptions#Page_Fault

More on Error codes

● rcr2() returns address attempted to be accessed on page fault
● Last 3 bits of tf->err

○ B2 is set if fault occurred in usermode
○ B1 is set if fault occurred on a write
○ B0 is set if it was a page protection issue. This is not set if the page is not present

● What will the error code be if the page fault was from touching the stack
region of memory?

● From touching a copy-on-write page?

Copy-on-write Fork FAQ

● How do we keep track of physical pages and refcounts?
○ Coremap!

● What vspace functions need to behave differently to support COW fork,
and how?
○ vspacecopy()

● Synchronization in modifying the vspace in page fault in COW fork?
○ Not needed -- current process has exclusive access to its own vspace
○ However, the ref count on the physical page could be concurrently modified

More COW

● What do the fields of a page (struct) need to be after a
copy-on-write fork?
○ (fields for reference) used, ppn, present, writeable

● What needs to be changed in the to support COW fork?
○ Ref count, (and a lock for the core map)

● Can the kernel cause a copy-on-write page fault?
○ Sure! While not a protection fault, a write to a read-only page will induce a page fault

● What can happen if a copy-on-write fork is not synchronized?

Any questions?

