Bonus Section: Lab 5 Swap

CSE 451 27 wi

*most of this content taken from 19sp when swap was lab 4

Admin

e Lab 5 Due Thursday, 3/18/21 in Finals week

o Send the course staff an email when you finish it so we know to grade it
o Reminder, it’s strictly extra credit, no penalty for not completing lab 5

e You don't needto turnin a design doc forlab 5
o But we recommend you do one anyways for your own sake :)

Memory vs Disk

e Memory is in close proximity to CPU
o Fast!
Memory o Volatile (loss of power == loss of data in
memory)
o More expensive (in actual cost, not
latency)

o Disk s farther away from CPU

o Much slower than main memory
‘ o Non-volatile

us
R l o Less expensive
Disks || ("Net <use) Etc.

Diagram from CSE 351 18WI slides

Memory Pages

Page 1 & Used
Virtual Memor Page 2 N
y Page 3 Using 512 pagesj 512
Page 4 (, A
lllusion that each process has Process 2
all of memory to itself Page 5
Page 6 - Using 256 pages 768
Would be nice if this illusion & >
held even when processes Rage N)
together use more space than Page 8 Process 3
available memory At e e g
2L | Using 256 pages) 1024
Page 10 .
Page 11
Page 12 L
Using 256 pages
Page 13 G | 1280!

Page 1024

After lab 4, this
- = Page in Use will be possible!

Creating the illusion of more memory

Memory

Disk

Since we need to make it seem
like there is more than 4MB of
memory, we will need
somewhere else to store data

|dea: use the disk to store extra
data, and page it in to memory
on demand (called “paging”)

Paging Example - Assumes OS has only 4 pages memory for simplicity

This mapping could be obtained as a
result of the following requests:

Proc 1: Requests a page of memory
Proc 2: Requests a page of memory
Proc 1: Requests a page of memory
Proc 2: Requests a page of memory

= Available = In Use
L = Note: This example is highly simplified

Paging Example - Swap page to disk

Memory Memory

Process 1

requests an

additional page

>

1. Move the least
recently used
page to disk!

2. Allocate the
new page!

[l= Available [l =In Use

Paging Example - Page fault (Page not present), Part 1

Memory G Process 1 tries to Memory
s read from its 1st

page

Page Fault!

Need to make room

for the page stored
on disk.

1. Move the least
recently used page to

disk to make room!

[[]= Available [l =In Use Continued on next slide...

Paging Example - Page fault (Page not present), Part 2

Memory

Memory T Process 1 tries to
FOEESS 1 read from its 1st
page

Page Fault!

]
]
]
I
I
Now that we have an :
'.
1
\

/

empty spot in
memory:

2. Move the
requested page into

memory.

= Available [l =In Use

Eviction Policy

e Previous example evicted based on least recently used (LRU) policy
o Faster, though requires a lot of bookkeeping on pages
o If you choose to do this, props (but no extra points)
o Aton of info on Linux’s page reclamation if you're curious

e Evicting arandom page is also fine for lab 5
o “get_random_user_page()’ function in “kernel/kalloc.c’

https://www.kernel.org/doc/gorman/html/understand/understand013.html

xk's Memory

xk's hardware is emulated by QEMU. In kernel/Makefrag we set up the options we will pass to QEMU

Before (Labs 1-4): After (Lab 5):

16MB (4096 pages) 4MB (1024 pages)

xk's Disk

e Similar to the log region, you will need to add a swap region to use for
pages swapped out to disk in mkfs.c

e 512 bytes in a disk block

Unused e 4096 bytes in a page
e Therefore, need 8 disk blocks

per swap page

Boot Super Bitmap Inodes Extent

Block Block

nswapblocks to use given in lab5.md
Add Swap g °
Region Here!

Representing the Swap

e How should we keep track of a memory page that is in the swap region?
o Hint: See how kalloc.c tracks physical pages for a design example (core_map)

e How do you track in a vspace whether a page is in physical or swap

memory?
o Hint: look at vpage_info struct and how that was used in Lab 3 COW fork

e What should happen when a swapped memory page is shared via
copy-on-write fork?

Swap In

e When should we load pages from the swap region?

1 "

o Hint: similar to lab 3’s “when should we make a physical copy of a COW page?”

e When a page is swapped in, what needs to be updated?
o Hint: who/what keeps track of whether a virtual page is in the swap?
o What if the swapped in page is a COW page?

e When should we flush pages to the swap?

e |Is there a set of memory pages you don't want to flush to swap?
o Hint: What happens if the trap code page is in the swap?
o In particular, don't evict page 0

e When a page is swapped out, what needs to be updated?
o Hint: who/what keeps track of whether a virtual page is present in physical memory?
o ..and what if the page is a COW page?

Some more discussion questions

e What will happen when forking a process with some of its memory stored

in the swap region?
o What about on exit?

e You found a page to evict and know its virtual address, on what conditions
should you update a vspace’s entry?

Concurrency Notes

Cannot hold a spin lock while reading/writing to/from disk

e Cannot acquiresleep() a sleeplock while holding a spinlock
o Since it may call sleep(), which calls sched()
o You can acquire() a spin lock while holding a sleeplock

e When swapping a page in be careful
o It may call vspaceinvalidate(), which may in turn call kalloc()

o vspaceinvalidate() may require up to 3 additional pages per process
o You might get a acquire() panic if you're not careful!

e Lots of potential concurrency bugs in this lab, be careful!

Questions?

Good Luck!

