
Bonus Section: Lab 5 Swap
CSE 451 21wi

*most of this content taken from 19sp when swap was lab 4



Admin

● Lab 5 Due Thursday, 3/18/21 in Finals week
○ Send the course staff an email when you finish it so we know to grade it
○ Reminder, it’s strictly extra credit, no penalty for not completing lab 5

● You don’t need to turn in a design doc for lab 5
○ But we recommend you do one anyways for your own sake :)



Memory vs Disk

● Memory is in close proximity to CPU
○ Fast!
○ Volatile (loss of power == loss of data in 

memory)
○ More expensive (in actual cost, not 

latency)

● Disk is farther away from CPU
○ Much slower than main memory
○ Non-volatile
○ Less expensive



Virtual Memory

● Illusion that each process has 
all of memory to itself

● Would be nice if this illusion 
held even when processes 
together use more space than 
available memory



Creating the illusion of more memory

● Since we need to make it seem 
like there is more than 4MB of 
memory, we will need 
somewhere else to store data

● Idea: use the disk to store extra 
data, and page it in to memory 
on demand (called “paging”)



Paging Example - Assumes OS has only 4 pages memory for simplicity



Paging Example - Swap page to disk



Paging Example - Page fault (Page not present), Part 1



Paging Example - Page fault (Page not present), Part 2



Eviction Policy

● Previous example evicted based on least recently used (LRU) policy
○ Faster, though requires a lot of bookkeeping on pages
○ If you choose to do this, props (but no extra points)
○ A ton of info on Linux’s page reclamation if you’re curious

● Evicting a random page is also fine for lab 5
○ `get_random_user_page()` function in `kernel/kalloc.c`

https://www.kernel.org/doc/gorman/html/understand/understand013.html


xk’s Memory

Before (Labs 1-4):

16MB (4096 pages)

After (Lab 5):

4MB (1024 pages)

xk’s hardware is emulated by QEMU. In kernel/Makefrag we set up the options we will pass to QEMU

QEMUOPTS += -m 16M QEMUOPTS += -m 4M



xk’s Disk

● Similar to the log region, you will need to add a swap region to use for 
pages swapped out to disk in mkfs.c

● 512 bytes in a disk block
● 4096 bytes in a page
● Therefore, need 8 disk blocks 

per swap page

nswapblocks to use given in lab5.md



Representing the Swap

● How should we keep track of a memory page that is in the swap region?
○ Hint: See how kalloc.c tracks physical pages for a design example (core_map)

● How do you track in a vspace whether a page is in physical or swap 
memory?

○ Hint: look at vpage_info struct and how that was used in Lab 3 COW fork

● What should happen when a swapped memory page is shared via 
copy-on-write fork?



Swap In

● When should we load pages from the swap region?
○ Hint: similar to lab 3’s “when should we make a physical copy of a COW page?”

● When a page is swapped in, what needs to be updated?
○ Hint: who/what keeps track of whether a virtual page is in the swap?
○ What if the swapped in page is a COW page?



Swap Out

● When should we flush pages to the swap?

● Is there a set of memory pages you don’t want to flush to swap?
○ Hint: What happens if the trap code page is in the swap?
○ In particular, don’t evict page 0

● When a page is swapped out, what needs to be updated?
○ Hint: who/what keeps track of whether a virtual page is present in physical memory?
○ …and what if the page is a COW page?



Some more discussion questions

● What will happen when forking a process with some of its memory stored 
in the swap region?

○ What about on exit?

● You found a page to evict and know its virtual address, on what conditions 
should you update a vspace’s entry?



Concurrency Notes

● Cannot hold a spin lock while reading/writing to/from disk
● Cannot acquiresleep() a sleeplock while holding a spinlock

○ Since it may call sleep(), which calls sched()
○ You can acquire() a spin lock while holding a sleeplock

● When swapping a page in be careful
○ It may call vspaceinvalidate(), which may in turn call kalloc()
○ vspaceinvalidate() may require up to 3 additional pages per process
○ You might get a acquire() panic if you’re not careful!

● Lots of potential concurrency bugs in this lab, be careful!



Questions?

Good Luck!


