
CSE 451 Final Exam Winter 2013 1

[60 points]

Consider the following program that allocates a multi-megabyte sized array of unsigned longs, and then
times how long it takes to write to every array location. The program varies the pattern it uses to write to
each array location based on a stride that changes between each pass through the array.

For example a stride of 1 makes one pass through the array accessing locations 0,1,2,… until the end of
the array is reached. A stride of 2 makes two passes through the array, first accessing locations 0,2,4,…
and then accessing locations 1,3,5,… until the end of the array is reached. The program starts with a
stride value of 1 and then increases it, based on user input, until the stride is equal to half the size of the
array. The program times how long it takes, in seconds, for each new stride through the array.

The program takes three parameters, first is the number of megabytes to allocate to the array, the second
and third parameters are the multiplication and additive factors used to compute the stride. For example,
the parameters “2 1 1” allocate a 2MB array testing stride values of 1,2,3,4,…, 131072. Note that 131072
is the halfway point in a 2MB integer array. The parameters “2 2 0” allocate a 2MB array testing stride
values of 1,2,4,8,16,…,131072. In other words the stride value doubles each time.

void main (int argc, char *argv[])
{
 clock_t StartTime, EndTime;
 unsigned long *Array;
 unsigned long Size, StrideTimes, StridePlus;
 unsigned long i,j,k;

 sscanf(argv[1], "%lu", &Size);
 sscanf(argv[2], "%lu", &StrideTimes);
 sscanf(argv[4], "%lu", &StridePlus);

 printf("Size = %luMB\n", Size);

 // Allocate a test array

 Size = 1024*1024*Size;
 if ((Array = malloc(Size)) == NULL) {
 printf("malloc failed\n");
 return;
 }
 Size /= 4;

 // Now test it for strides from 1 to size/2

 printf(" Stride Seconds\n");
 for (i = 1; i < Size/2; i = (i*StrideTimes)+StridePlus) {
 printf("%8lu", i);
 StartTime = clock();
 for (j = 0; j < i; j++) {
 for (k = j; k < Size; k += i) {
 Array[k] = k;
 }
 }
 EndTime = clock();
 printf(", %8.3f\n", ((double)(EndTime - StartTime)/CLOCKS_PER_SEC));
 }
}

CSE 451 Final Exam Winter 2013 2

This program was run on both Windows and Linux systems with 4GB of RAM. Here is the data for a run
of “1024 2 1” on a Linux system.

Size = 1024MB
 Stride Seconds Stride Seconds Stride Seconds
 1, 1.920
 2, 1.560
 4, 2.780
 8, 5.530
 16, 11.450
 32, 16.470
 64, 15.000
 128, 13.390
 256, 12.310

 512, 11.890
 1024, 12.190
 2048, 12.960
 4096, 14.280
 8192, 16.510
 16384, 22.070
 32768, 22.390
 65536, 21.510
 131072, 20.270

 262144, 18.250
 524288, 14.710
 1048576, 9.810
 2097152, 5.310
 4194304, 4.100
 8388608, 3.820
16777216, 3.760
33554432, 2.170
67108864, 1.170

[20 points] Notice how the first pass with a stride of 1 takes longer then the second pass with a stride of 2.
This behavior showed up consistently on Linux but not Windows. Please give a plausible explanation for
what causes this phenomenon (it might be a mix of both hardware and software), and what the operating
system can do to prevent it. You will need to justify your answer.

[20 points] Also notice how the time for each pass increases and then decreases as the stride values grow
from 1 to 67108864. Both Windows and Linux exhibited this behavior. Please give a plausible
explanation for this phenomenon (it might be a mix of both hardware and software), and what the
operating system can do to prevent it. You will need to justify your answer.

CSE 451 Final Exam Winter 2013 3

Now consider the same program run with “64 1 1”. The entire output is too long to include here, but the
following is a small section of the output that shows another anomaly that occurs on both Windows and
Linux.

Size = 64MB
 Stride Seconds Stride Seconds Stride Seconds
 700, 0.109
 701, 0.140
 702, 0.093
 703, 0.109
 704, 0.530
 705, 0.109
 706, 0.093
 707, 0.109
 708, 0.109
 709, 0.109
 710, 0.109
 711, 0.109
 712, 0.109
 713, 0.109
 714, 0.202
 715, 0.109
 716, 0.093
 717, 0.109
 718, 0.109
 719, 0.093
 720, 0.171
 721, 0.093
 722, 0.109
 723, 0.109
 724, 0.093
 725, 0.109

 726, 0.109
 727, 0.109
 728, 0.109
 729, 0.109
 730, 0.109
 731, 0.093
 732, 0.109
 733, 0.109
 734, 0.109
 735, 0.109
 736, 0.140
 737, 0.093
 738, 0.124
 739, 0.093
 740, 0.109
 741, 0.249
 742, 0.109
 743, 0.109
 744, 0.109
 745, 0.171
 746, 0.109
 747, 0.109
 748, 0.109
 749, 0.405
 750, 0.109
 751, 0.093

 752, 0.124
 753, 0.109
 754, 0.109
 755, 0.093
 756, 0.109
 757, 0.109
 758, 0.109
 759, 0.109
 760, 0.109
 761, 0.109
 762, 0.109
 763, 0.109
 764, 0.093
 765, 0.499
 766, 0.109
 767, 0.109
 768, 0.748
 769, 0.109
 770, 0.093
 771, 0.124
 772, 0.093
 773, 0.109
 774, 0.109
 775, 0.109
 776, 0.124
 777, 0.093

[20 points] Notice how the times are consistently in the low 100ms range except for an occasional blip in
the 200ms to 700ms range. These blips have been underlined. Please offer an explanation for these blips.
Your answer needs to offer a plausible explanation of what is causing this anomaly (it might be a mix of
both hardware and software), and what the operating system can do to prevent it, if anything. You will
need to justify your answer. If you do cannot offer an educated guess on what causes this phenomenon
explain what you could do to determine its cause.

