
CSE 451: Operating Systems

Winter 2021

Module 25

Virtual Machine Monitors

Mark Zbikowski
Gary Kimura

2

What do VMMs enable?

• Running multiple operating systems (called “guest
OS’s”) and their applications on a single physical
computer, as if each were running on its own private
virtual computer

• Efficient – mostly direct execution, rather than
simulation

• Contemporary examples
– VMware
– Microsoft’s VirtualPC / VirtualServer
– Parallels (Mac)
– Xen

3

VMM structure

hardware

virtual machine monitor

Linux

Virtual Machine =
Guest OS + apps

Virtual Machine =
Guest OS + apps

Windows

applications applications

4

Basic ideas

• Guest OS runs in user mode

• When any kind of interrupt / exception / trap occurs,
we’ll end up in the VMM rather than the guest OS

• VMM simulates state changes that would have been
made by the hardware, then restarts VM at the guest
OS handler address
– E.g., stuffs the saved PC where the architecture says it

should be

• When the guest OS tries to execute a privileged
instruction
– VMM gets control, simulates effect of privileged instruction

• VMM knows that guest OS was in virtual kernel mode so the
attempted operation is OK

5

VMM History

• Conceived by IBM in the late 1960’s
– CP-40, CP-67, VM/360

• Sold continuously since then

• Used first for OS development and debugging, then
for time sharing (multiple single-user OS’s, plus a few
single-job batch OS’s), eventually for server
consolidation

System 370 Machine

VM/370

Batch processing

OS

Time sharing

OS

6

VMMs Today

• OS development and debugging

• Software compatibility testing

• Running software from another OS
– Or, OS version

• Virtual infrastructure for Internet services (server
consolidation)

• Examples
– Run Windows on your Mac, or MacOS on your PC

– VMware in CSE 451

– Amazon’s Elastic Compute Cloud (EC2)

7

Comparing the Unix and VMM APIs

UNIX VMM

Storage File system (virtual) disk

Networking Sockets (virtual) Ethernet

Memory Virtual Memory (virtual) Physical memory

Display /dev/console (virtual) Keyboard, display
device

8

Possible Implementation Strategy:
Complete machine emulation

• The VMM implements the complete
hardware architecture in software

while(true) {
Instruction instr = fetch();

// emulate behavior in software
instr.emulate();

}

Drawback: This is really slow

9

Physical hardware

loads,stores,
branches,

ALU operations
VMM

machine halt,
I/O instructions,
MMU manipulation,
disabling interrupts

Practical alternative: VMM gets control on
privileged instructions only

• Treat guest operating systems (and their apps) like an application
– Guest OS (and its apps) run in user mode
– Most instructions execute natively on the CPU
– Privileged instructions are trapped and emulated

OS + apps

V i r t u a l m a c h i n e s
. . .

OS + apps OS + apps

10

Virtualizing the User/Kernel Boundary

• Both the guest OS and applications run in (physical) user-mode
• For each virtual machine, the VMM keeps a software mode bit:

– During a system call, switch to “kernel” mode
– On system call return, switch to “user” mode

• What does the VMM do if a VM executes a privileged instruction
while in virtual user mode?

• What does the VMM do if a VM executes a privileged instruction
while in virtual kernel mode?

11

Tracing Through a File System Read

Application Guest OS VMM Hardware
read() syscall

trap detected
trap handler;
change VM
to “kernel” mode

trap handler
handle read syscall

read from disk()
priv insc. detected

trap handler;
emulate I/O

.

.

.

.

12

Questions, to clarify …

• What if the I/O could be handled from the buffer
cache?

• Does the VMM handle a VM’s I/O request
synchronously?

• There are a zillion different types of disks (and
networks and …) … Do the device drivers for these
reside in the guest OS or in the VMM?

13

A possible “gotcha”

• All instructions that modify hardware state must be
privileged (so that VMM can get control, modify the
virtual hardware state for that guest, and not modify
the physical hardware state)

• Example: Suppose the ERET instruction (return to a
user process after handling an exception) is not
privileged
– ERET sets the PC to the saved PC, and sets CPU mode to

user

– There doesn’t seem to be a reason to prevent user
processes from doing this (even if there’s no reason for them
to want to)

Why would this be a problem for a VMM?

14

x86

• Conditions for an architecture to be virtualizable were
defined in 1974

• x86 architecture did not satisfy these conditions!
– Many reasons, but most of them stem from instructions that

have different behavior in user mode and kernel mode, and
that don’t trap when executed in user mode

• Approach: binary re-writing
– When a code page is loaded, scan it, looking for offending

instructions

– Patch these to cause a fault

– Remember the instruction that used to be there

15

Other approaches

• Hardware: Both Intel (VT-x) and AMD (AMD-V) have
developed virtualization extensions to the
architecture (starting ~2006)

• Paravirtualization: Export a slight modification of the
hardware; port the OS to this new hardware

16

Memory

• VMM’s also utilize memory protection (in addition to
privileged instructions) to do their job

• Have not described how memory is virtualized by a
VMM, creating “virtual physical memory” for the guest
OS’s

• Approach involves the VMM futzing with the page
tables in the guest OS’s

Trust Issues

Problem:
– Who can you trust?

– OS protects processes from each other
• OS is “trusted” since you’re running it on your hardware

• You don’t worry about OS snooping your data

– But in the cloud, Amazon (or Microsoft or Google)
are running your operating systems in their VMM

• VMs are ”just” user mode processes

• VMM “naturally” isolates them

• But, the VMM can look into the guest OS/process!

3/10/2021 17

How You Can Trust The VMM

Solution:
– Tricky hardware!
– Keep all data encrypted

• On disk, no problem.
• In memory, sure… but...
• How does the processor read/write/execute?

– Intel SGX/MEE processor / memory controller
• RAM is encrypted!
• Special instructions to tell processor where the encrypted

regions are
• Processor decrypts pages into hidden caches and executes

from there

– A. Baumann, M. Peinado, and G. Hunt, “Shielding
Applications from an Untrusted Cloud with Haven,” Sep.
2014.

3/10/2021 18

