CSE 451: Operating Systems
Winter 2021

Module 7
Synchronization

Mark Zbikowski
Gary Kimura
Temporal relations

• Instructions executed by a single thread are totally ordered
 – A < B < C < …

• Absent **synchronization**, instructions executed by distinct threads must be considered unordered / simultaneous
 – Not X < X’, and not X’ < X
Example

Y-axis is “time.”

Could be one CPU, could be multiple CPUs (cores).

- $A < B < C$
- $A' < B'$
- $A < A'$
- $C == A'$
- $C == B'$
Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect results if executed simultaneously are called critical sections
• (We also use the term race condition to refer to a situation in which the results depend on timing)
• Mutual exclusion means “not simultaneous”
 – A < B or B < A
 – We don’t care which
• Forcing mutual exclusion between two critical section executions is sufficient to ensure correct execution – guarantees ordering
• One way to guarantee mutually exclusive execution is using locks
Critical sections

→ is the “happens-before” relation
When do critical sections arise?

• One common pattern:
 – read-modify-write of
 – a shared value (variable)
 – in code that can be executed concurrently
 (Note: There may be only one copy of the code (e.g., a procedure), but it can be executed by more than one thread at a time)

• Shared variable:
 – Globals and heap-allocated variables
 – NOT local variables (which are on the stack)
 (Note: Never give a reference to a stack-allocated (local) variable to another thread, unless you’re superhumanly careful …)
Example: buffer management

- Threads cooperate in multithreaded programs
 - to share resources, access shared data structures
 - e.g., threads accessing a memory cache in a web server
 - also, to coordinate their execution
 - e.g., a disk reader thread hands off blocks to a network writer thread through a circular buffer
Example: shared bank account

• Suppose we have to implement a function to withdraw money from a bank account:

```c
int withdraw(account, amount) {
    int balance = get_balance(account); // read
    balance -= amount;                   // modify
    put_balance(account, balance);       // write
    spit out cash;
}
```

• Now suppose that you and your partner share a bank account with a balance of $100.00
 – what happens if you both go to separate ATM machines, and simultaneously withdraw $10.00 from the account?
• Assume the bank’s application is multi-threaded
• A random thread is assigned a transaction when that transaction is submitted

int withdraw(account, amount) {
 int balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 spit out cash;
}

int withdraw(account, amount) {
 int balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 spit out cash;
}
Interleaved schedules

• The problem is that the execution of the two threads can be interleaved, assuming preemptive scheduling:

```c
balance = get_balance(account);
balance -= amount;

balance = get_balance(account);
balance -= amount;
put_balance(account, balance);
spit out cash;

put_balance(account, balance);
spit out cash;
```

• What’s the account balance after this sequence?
 – who’s happy, the bank or you?
• How often is this sequence likely to occur?
Other Execution Orders

• Which interleavings are ok? Which are not?

```c
int withdraw(account, amount) {
    int balance = get_balance(account);
    balance -= amount;
    put_balance(account, balance);
    spit out cash;
}
```

```c
int withdraw(account, amount) {
    int balance = get_balance(account);
    balance -= amount;
    put_balance(account, balance);
    spit out cash;
}
```
How About Now?

• Morals:
 – Interleavings are hard to reason about
 • We make lots of mistakes
 • Control-flow analysis is hard for tools to get right
 – Identifying critical sections and ensuring mutually exclusive access is … “easier”
Another example

```
i++;          i++;  
```
Correct critical section requirements

- Correct critical sections have the following requirements
 - mutual exclusion
 - at most one thread is in the critical section
 - progress
 - if thread T is outside the critical section, then T cannot prevent thread S from entering the critical section
 - bounded waiting (no starvation)
 - if thread T is waiting on the critical section, then T will eventually enter the critical section
 - assumes threads eventually leave critical sections
 - performance
 - the overhead of entering and exiting the critical section is small with respect to the work being done within it
Mechanisms for building critical sections

- **Spinlocks**
 - primitive, minimal semantics; used to build others
- **Semaphores (and non-spinning locks)**
 - basic, easy to get the hang of, somewhat hard to program with
- **Monitors**
 - higher level, requires language support, implicit operations
 - easier to program with; Java “synchronized()” as an example
- **Messages**
 - simple model of communication and synchronization based on (atomic) transfer of data across a channel
 - direct application to distributed systems
Locks

• A lock is a memory object with two operations:
 - acquire(): obtain the right to enter the critical section
 - release(): give up the right to be in the critical section
• acquire() prevents progress of the thread until the lock can be acquired
• (Note: terminology varies: acquire/release, lock/unlock)
Locks: Example

lock()
unlock()
lock()
unlock()
Acquire/Release

• Threads pair up calls to `acquire()` and `release()`
 – between `acquire()` and `release()`, the thread holds the lock
 – `acquire()` does not return until the caller “owns” (holds) the lock
 • at most one thread can hold a lock at a time
 – What happens if the calls aren’t paired (I acquire, but neglect to release)?
 – What happens if the two threads acquire different locks (I think that access to a particular shared data structure is mediated by lock A, and you think it’s mediated by lock B)?
 • (granularity of locking)
Using locks

```c
int withdraw(account, amount) {
    acquire(lock);
    balance = get_balance(account);
    balance -= amount;
    put_balance(account, balance);
    release(lock);
    spit out cash;
}
```

- What happens when green tries to acquire the lock?
Roadmap …

• Where we are eventually going:
 – The OS and/or the user-level thread package will provide some sort of efficient primitive for user programs to utilize in achieving mutual exclusion (for example, locks or semaphores, used with condition variables)
 – There may be higher-level constructs provided by a programming language to help you get it right (for example, monitors – which also utilize condition variables)

• But somewhere, underneath it all, there needs to be a way to achieve “hardware” mutual exclusion (for example, test-and-set used to implement spinlocks)
 – This mechanism will not be utilized by user programs
 – But it will be utilized in implementing what user programs see
Spinlocks

• How do we implement spinlocks? Here’s one attempt:

```c
struct lock_t {
    int held = 0;
}
void acquire(lock) {
    while (lock->held);
    lock->held = 1;
}
void release(lock) {
    lock->held = 0;
}
```

the caller “busy-waits”, or spins, for lock to be released ⇒ hence spinlock

• Why doesn’t this work?
 – where is the race condition?
Implementing spinlocks (cont.)

• Problem is that implementation of spinlocks has critical sections, too!
 – the acquire/release must be **atomic**
 • atomic == executes as though it could not be interrupted
 • code that executes “all or nothing”

• Need help from the hardware
 – atomic instructions
 • test-and-set, compare-and-swap, …
 – disable/reenable interrupts
 • to prevent context switches
Spinlocks redux: Hardware Test-and-Set

- CPU provides the following as \textbf{one atomic instruction}:

```c
bool test_and_set(bool *flag) {
    bool old = *flag;
    *flag = True;
    return old;
}
```

- Remember, this is a single \textbf{atomic} instruction …
Implementing spinlocks using Test-and-Set

- So, to fix our broken spinlocks:

```c
struct lock {
    int held = 0;
}
void acquire(lock) {
    while(test_and_set(&lock->held));
}
void release(lock) {
    lock->held = 0;
}
```

- mutual exclusion? (at most one thread in the critical section)
- progress? (T outside cannot prevent S from entering)
- bounded waiting? (waiting T will eventually enter)
- performance? (low overhead (modulo the spinning part …))
Reminder of use …

int withdraw(account, amount) {
 acquire(lock);
 balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 release(lock);
 spit out cash;
}

• How does a thread blocked on an “acquire” (that is, stuck in a test-and-set loop) yield the CPU?
 – calls yield() *(spin-then-block)*
 – there’s an involuntary context switch (e.g., timer interrupt)
Problems with spinlocks

• Spinlocks work, but are wasteful!
 – if a thread is spinning on a lock, the thread holding the lock cannot make progress
 • You’ll spin for a scheduling quantum
 – (pthread_spin_t)

• Only want spinlocks as primitives to build higher-level synchronization constructs
 – Why is this okay?

• We’ll see later how to build blocking locks
 – But there is overhead – can be cheaper to spin
 – (pthread_mutex_t)
Another approach: Disabling interrupts

```c
struct lock {
};

void acquire(lock) {
    cli();    // disable interrupts
}

void release(lock) {
    sti();    // reenable interrupts
}
```
Problems with disabling interrupts

• Only available to the kernel
 – Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor
 – Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak havoc with devices

• Just as with spinlocks, you only want to use disabling of interrupts to build higher-level synchronization constructs
Race conditions

• Informally, we say a program has a race condition (aka “data race”) if the result of an executing depends on timing
 – i.e., is non-deterministic

• Typical symptoms
 – I run it on the same data, and sometimes it prints 0 and sometimes it prints 4
 – I run it on the same data, and sometimes it prints 0 and sometimes it crashes
Summary

• Synchronization introduces temporal ordering
• Adding synchronization can eliminate races
• Synchronization can be provided by locks, semaphores, monitors, messages …
• Spinlocks are the lowest-level mechanism
 – primitive in terms of semantics – error-prone
 – implemented by spin-waiting (crude) or by disabling interrupts (also crude, and can only be done in the kernel)
• In our next exciting episode …
 – semaphores are a slightly higher level abstraction
 • Importantly, they are implemented by blocking, not spinning
 • Locks can also be implemented in this way
 – monitors are significantly higher level
 • utilize programming language support to reduce errors