
CSE 451: Operating Systems

Winter 2021

Module 4

Processes

Mark Zbikowski
Gary Kimura

2

Process management

• This module begins a series of topics on processes,
threads, and synchronization
– this is the most important part of the class

• In this module: processes and process management
– What is a “process”?
– What’s the OS’s process namespace?
– How are processes represented inside the OS?
– What are the executing states of a process?
– How are processes created?
– How can this be made faster?
– Shells
– Signals

• The process is the OS’s abstraction for execution
– A process is a program in execution

• Simplest (classic) case: a sequential process
– An address space (an abstraction of memory)

– A single thread of execution (an abstraction of the CPU)

• A sequential process is:
– The unit of execution

– The unit of scheduling

– The dynamic (active) execution context
• vs. the program – static, just a bunch of bytes

What is a “process”?

3

address space

thread

• A process consists of (at least):
– An address space, containing

• the code (instructions) for the running program

• the data for the running program (static data, heap data, stack)

– (At least one) CPU state, consisting of
• The instruction pointer (EIP), indicating the next instruction

• The stack pointer (ESP)

• Other general purpose register values

– A set of OS resources
• open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run the
program
– or to re-start it, if it’s interrupted at some point

What’s “in” a process?

4

A process’s address space (idealized)

5

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

EIP

ESP

6

The OS’s process namespace

• (Like most things, the particulars depend on the
specific OS, but the principles are general)

• The name for a process is called a process ID (PID)
– An integer

• The PID namespace is global to the system
– Only one process at a time has a particular PID

• Operations that create processes return a PID
– E.g., fork()

• Operations on processes take PIDs as an argument
– E.g., kill(), wait(), nice()

7

• The OS maintains a data structure to keep track of a
process’s state
– Called the process control block (PCB/KPROCESS/proc) or

process descriptor
– Identified by the PID

• OS keeps all of a process’s execution state in (or linked
from) the proc when the process isn’t running
– EIP, ESP, registers, etc.
– when a process is unscheduled, the execution state is

transferred out of the hardware registers into the proc
– (when a process is running, its state is spread between the proc

and the CPU)

• Note: It’s natural to think that there must be some
esoteric techniques being used
– fancy data structures that you’d never think of yourself

Wrong! It’s pretty much just what you’d think of!

Representation of processes by the OS

8

The proc

• The proc is a data structure with many, many fields:
– process ID (pid)

– pointer to parent proc

– execution state

– Instruction pointer, stack pointer, registers

– address space info

– pointers for state queues

• In Linux:
– defined in task_struct (include/linux/sched.h)

– over 95 fields!!!

9

procs and CPU state
• When a process is running, its CPU state is inside the

CPU
– EIP, ESP, registers

– CPU contains current values

• When the OS gets control because of a …
– Trap: Program executes a syscall

– Exception: Program does something unexpected (e.g., page
fault)

– Interrupt: A hardware device requests service

the OS saves the CPU state of the running process in
that process’s proc

10

• When the OS returns the process to the running state, it
loads the hardware registers with values from that
process’s proc – general purpose registers, stack
pointer, instruction pointer

• The act of switching the CPU from one process to
another is called a context switch
– systems may do 100s or 1000s of switches/sec.

– takes a few microseconds on today’s hardware

• Choosing which process to run next is called scheduling

11

The OS kernel is not a process

• It’s just a block of code!

• (In a microkernel OS, many things that you normally
think of as the operating system execute as user-
mode processes. But the OS kernel is just a block of
code.)

• Remember: the CPU is always executing code in the
context of a process. That code may be in user mode
(restricted access to hardware) or kernel mode (free-
for-all).

12

Process execution states

• Each process has an execution state, which indicates
what it’s currently doing
– ready: waiting to be assigned to a CPU

• could run, but another process has the CPU

– running: executing on a CPU
• it’s the process that currently controls the CPU

– waiting (aka “blocked”): waiting for an event, e.g., I/O
completion, or a message from (or the completion of)
another process

• cannot make progress until the event happens

• As a process executes, it moves from state to state
– UNIX: run ps, STAT column shows current state

– which state is a process in most of the time?

13

Process states and state transitions

running

ready

blocked

trap or exception
(I/O, page fault,

etc.)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

You can create
and destroy
processes!

create

terminate

14

State queues

• The OS maintains a collection of queues that
represent the state of all processes in the system
– typically one queue for each state

• e.g., ready, waiting, …

– each proc is queued onto a state queue according to the
current state of the process it represents

– as a process changes state, its proc is unlinked from one
queue, and linked onto another

• Once again, this is just as straightforward as it
sounds! The proc are moved between queues, which
are represented as linked lists. There is no magic!

15

State queues

• There may be many wait queues, one for each type
of wait (particular device, timer, message, …)

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are procs!

16

procs and state queues

• procs are data structures
– dynamically allocated inside OS memory

• When a process is created:
– OS allocates a proc for it

– OS initializes proc

– (OS does other things not related to the proc)

– OS puts proc on the correct queue

• As a process computes:
– OS moves its proc from queue to queue

• When a process is terminated:
– proc may be retained for a while (to receive signals, etc.)

– eventually, OS deallocates the proc

17

Process creation

• New processes are created by existing processes
– creator is called the parent

– created process is called the child
• UNIX: do ps, look for PPID field

– what creates the first process, and when?

18

19

Process creation semantics

• (Depending on the OS) child processes inherit certain
attributes of the parent
– Examples:

• Open file table: implies stdin/stdout/stderr

• On some systems, resource allocation to parent may be divided
among children

• (In Unix) when a child is created, the parent may
either wait for the child to finish, or continue in
parallel

• (In Unix) These are policies implemented by the
kernel. In Windows, inheritance is done explicitly in
user mode by the CreateProcess library routine (it’s
not a system call!)

20

UNIX process creation details

• UNIX process creation through fork() system call
– creates and initializes a new proc

• initializes kernel resources of new process with resources of
parent (e.g., open files)

• initializes EIP, ESP to be same as parent

– creates a new address space
• initializes new address space with a copy of the entire contents

of the address space of the parent

– places new proc on the ready queue

• the fork() system call “returns twice”
– once into the parent, and once into the child

• returns the child’s PID to the parent

• returns 0 to the child

• fork() = “clone me”

21

Parent
address space

(code, static
data, heap,

stack)

Parent
proc

22

Parent
address space

(code, static
data, heap,

stack)

Parent
proc

Child address
space

(code, static
data, heap,

stack)

Child
proc

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

23

testparent – use of fork()

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
char *name = argv[0];
int pid = fork();
if (pid == 0) {
printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

}
}

24

testparent output

spinlock% gcc -o testparent testparent.c

spinlock% ./testparent

My child is 486

Child of testparent is 0

spinlock% ./testparent

Child of testparent is 0

My child is 571

25

exec() vs. fork()

• Q: So how do we start a new program, instead of
just forking the old program?

• A: First fork, then exec
– int exec(char * prog, char * argv[])

• exec()
– stops the current process

– loads program ‘prog’ into the address space
• i.e., over-writes the existing process image

– initializes hardware context, args for new program

– places proc onto ready queue

– note: does not create a new process!

26

• So, to run a new program:
– fork()

– Child process does an exec()

– Parent either waits for the child to complete, or not

27

Parent
address space

(code, static
data, heap,

stack)

Parent
proc

Child address
space

(code, static
data, heap,

stack)

Child
proc

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

28

Parent
address space

(code, static
data, heap,

stack)

Parent
proc

Child address
space

(code, static
data, heap,

stack)

Child
proc

29

Making process creation faster

• The semantics of fork() say the child’s address space
is a copy of the parent’s

• Implementing fork() that way is slow
– Have to allocate physical memory for the new address space

and reserve swap space

– Have to set up child’s page tables to map new address
space

– Have to copy parent’s address space contents into child’s
address space

• Which you are likely to immediately throw away with an exec()!

30

Method 1: vfork()

• vfork() is the older (now uncommon) of the two
approaches we’ll discuss

• Instead of “child’s address space is a copy of the
parent’s,” the semantics are “child’s address space is
the parent’s”
– With a “promise” that the child won’t modify the address space

before doing an execve()
• Unenforced! You use vfork() at your own peril

– When execve() is called, a new address space is created and
it’s loaded with the new executable

– Parent is blocked until execve() is executed by child
– Saves wasted effort of duplicating parent’s address space,

just to throw it away

31

Parent
address space

(code, static
data, heap,

stack)

Parent
proc

Child
proc

similar, but different
in key ways

Vfork()

32

Method 2: copy-on-write

• Retains the original semantics, but copies “only what
is necessary” rather than the entire address space

• On fork():
– Create a new address space

– Initialize page tables with same mappings as the parent’s
(i.e., they both point to the same physical memory)

• No copying of address space contents have occurred at this
point – with the sole exception of the top page of the stack

– Set both parent and child page tables to make all pages
read-only

– If either parent or child writes to memory, an exception
occurs

– When exception occurs, OS copies the page, adjusts page
tables, etc.

33

UNIX shells
int main(int argc, char **argv)

{

while (1) {

printf (“$ “);

char *cmd = get_next_command();

int pid = fork();

if (pid == 0) {

exec(cmd);

panic(“exec failed!”);

} else {

wait(pid);

}

}

}

34

Truth in advertising …

• In Linux today, clone is replacing fork (and vfork)
– clone has additional capabilities/options

• But you need to clearly understand fork as described
here

• In Linux today, exec is not a system call; execve is
the only “exec-like” system call
– execve knows whether you have done a fork or a vfork by a

flag in the PCB

• But you need to clearly understand exec as
described here

35

Input/output redirection

• $./myprog < input.txt > output.txt # UNIX
– each process has an open file table

– by (universal) convention:
• 0: stdin

• 1: stdout

• 2: stderr

• A child process inherits the parent’s open file table

• Redirection: the shell …
– copies its current stdin/stdout open file entries

– opens input.txt as stdin and output.txt as stdout

– fork …

– restore original stdin/stdout

36

Old-school Inter-process communication
via signals

• Processes can register event handlers
– Feels a lot like event handlers in Java, which ..

– Feel sort of like catch blocks in Java programs

• When the event occurs, process jumps to event
handler routine

• Used to catch exceptions

• Also used for inter-process (process-to-process)
communication
– A process can trigger an event in another process using

signal

– Note that a signal is one bit; you can pass way more
information using other signals… but why?

37

Signals
 Signal Value Action Comment
 --
 SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 Term Interrupt from keyboard
 SIGQUIT 3 Core Quit from keyboard
 SIGILL 4 Core Illegal Instruction
 SIGABRT 6 Core Abort signal from abort(3)
 SIGFPE 8 Core Floating point exception
 SIGKILL 9 Term Kill signal
 SIGSEGV 11 Core Invalid memory reference
 SIGPIPE 13 Term Broken pipe: write to pipe with no readers
 SIGALRM 14 Term Timer signal from alarm(2)
 SIGTERM 15 Term Termination signal
 SIGUSR1 30,10,16 Term User-defined signal 1
 SIGUSR2 31,12,17 Term User-defined signal 2
 SIGCHLD 20,17,18 Ign Child stopped or terminated
 SIGCONT 19,18,25 Continue if stopped
 SIGSTOP 17,19,23 Stop Stop process
 SIGTSTP 18,20,24 Stop Stop typed at tty
 SIGTTIN 21,21,26 Stop tty input for background process
 SIGTTOU 22,22,27 Stop tty output for background process

38

Example use

• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
– Controls things like what the root directory of the web files

is, what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while
Apache is running
– If you restart the currently running Apache, you drop some

unknown number of user connections

• Solution: send the running Apache process a signal
– It has registered an signal handler that gracefully re-reads

the configuration file

