
CSE 451: Operating Systems

Winter 2021

Module 3

Operating System

Components and Structure

Mark Zbikowski
Gary Kimura

© 2021 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 1

© 2013 Gribble, Lazowska, Levy, Zahorjan 2

OS structure

• The OS sits between application programs and the
hardware
– it mediates access and abstracts away ugliness

– programs request services via traps or exceptions

– devices request attention via interrupts

OS

P1

P2 P3
P4

D1
D2 D3

D4

trap or
exception interrupt

dispatch

start i/o

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File
Systems

Memory
Manager

Process
Manager

Network
Support

Device
Drivers

Interrupt
Handlers

Boot &
Init

JavaPhotoshopFirefox

O
pe

ra
tin

g
S

ys
te

m P
ortable

U
se

r A
pp

s

Acrobat

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

Major OS components

• processes/threads

• memory

• I/O

• secondary storage

• file systems

• protection

• shells (command interpreter, or OS UI)

• GUI

• networking

© 2013 Gribble, Lazowska, Levy, Zahorjan 6

Process management

• An OS executes many kinds of activities:
– users’ programs

– batch jobs or scripts

– system programs
• print spoolers, name servers, file servers, network daemons, …

• Each of these activities is encapsulated in a process
– a process includes the execution context

• PC, registers, VM, OS resources (e.g., open files), etc…

• plus the program itself (code and data)

– the OS’s process module manages these processes
• creation, destruction, scheduling, …

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Important: Processes vs. Threads

• Soon, we will separate the “thread of control” aspect
of a process (program counter, call stack) from its
other aspects (address space, open files, owner,
etc.). And we will allow each {process / address
space} to have multiple threads of control.

• But for now – for simplicity and for historical reasons
– consider each {process / address space} to have a
single thread of control.

© 2013 Gribble, Lazowska, Levy, Zahorjan 8

Program/processor/process

• Note that a program is totally passive
– just bytes on a disk that encode instructions to be run

• A process is an instance of a program being
executed by a (real or virtual) processor
– at any instant, there may be many processes running copies

of the same program (e.g., an editor); each process is
separate and (usually) independent

– Linux: ps -auwwx to list all processes

process A process B

code
stack
PC

registers

code
stack
PC

registers

page
tables

resources

page
tables

resources

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

States of a user process

running

ready

blocked

trap or
exception

interruptdispatch

interrupt

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

Process operations

• The OS provides the following kinds operations on
processes (i.e., the process abstraction interface):
– create a process

– delete a process

– suspend a process

– resume a process

– clone a process

– inter-process communication

– inter-process synchronization

– create/delete a child process (subprocess)

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

Memory management

• The primary memory is the directly accessed storage
for the CPU
– programs must be resident in memory to execute

– memory access is fast

– but memory doesn’t survive power failures

• OS must:
– allocate memory space for programs

– deallocate space when needed by rest of system

– maintain mappings from physical to virtual memory
• through page tables

– decide how much memory to allocate to each process
• a policy decision

– decide when to remove a process from memory
• also policy

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

I/O

• A big chunk of the OS kernel deals with I/O
– hundreds of thousands of lines in Windows, Unix, etc.

• The OS provides a standard interface between
programs (user or system) and devices
– file system (disk), sockets (network), frame buffer (video)

• Device drivers are the routines that interact with
specific device types
– encapsulates device-specific knowledge

• e.g., how to initialize a device, how to request I/O, how to
handle interrupts or errors

• examples: SCSI device drivers, Ethernet card drivers, video
card drivers, sound card drivers, …

• Note: Windows has ~35,000 device drivers!

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

Secondary storage

• Secondary storage (disk, FLASH, tape) is persistent
memory
– often magnetic media, survives power failures (hopefully)

• Routines that interact with disks are typically at a very
low level in the OS
– used by many components (file system, VM, …)

– handle scheduling of disk operations, head movement, error
handling, and often management of space on disks

• Usually independent of file system
– although there may be cooperation

– file system knowledge of device details can help optimize
performance

• e.g., place related files close together on disk

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

File systems

• Secondary storage devices are crude and awkward
– e.g., “write a 4096 byte block to sector 12”

• File system: a convenient abstraction
– defines logical objects like files and directories

• hides details about where on disk files live

– as well as operations on objects like read and write
• read/write byte ranges instead of blocks

• A file is the basic unit of long-term storage
– file = named collection of persistent information

• A directory is just a special kind of file
– directory = named file that contains names of other files and

metadata about those files (e.g., file size)

• Note: Sequential byte stream is only one possibility!

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

File system operations

• The file system interface defines standard operations:
– file (or directory) creation and deletion

– manipulation of files and directories (read, write, extend,
rename, protect)

– copy

– lock

• File systems also provide higher level services
– accounting and quotas

– backup (must be incremental and online!)

– (sometimes) indexing or search

– (sometimes) file versioning

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

Protection

• Protection is a general mechanism used throughout
the OS
– all resources needed to be protected

• memory

• processes

• files

• devices

• CPU time

• …

– protection mechanisms help to detect and contain
unintentional errors, as well as preventing malicious
destruction

© 2013 Gribble, Lazowska, Levy, Zahorjan 17

Command interpreter (shell)

• A particular program that handles the interpretation of
users’ commands and helps to manage processes
– user input may be from keyboard (command-line interface),

from script files, or from the mouse (GUIs)

– allows users to launch and control new programs

• On some systems, command interpreter may be a
standard part of the OS (e.g., MS DOS, Apple II)

• On others, it’s just non-privileged code that provides
an interface to the user
– e.g., bash/csh/tcsh/zsh on UNIX

• On others, there may be no command language
– e.g., MacOS

© 2013 Gribble, Lazowska, Levy, Zahorjan 18

OS structure

• It’s not always clear how to stitch OS modules
together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

© 2013 Gribble, Lazowska, Levy, Zahorjan 19

OS structure

• An OS consists of all of these components, plus:
– many other components

– system programs (privileged and non-privileged)
• e.g., bootstrap code, the init program, …

• Major issue:
– how do we organize all this?

– what are all of the code modules, and where do they exist?

– how do they cooperate?

• Massive software engineering and design problem
– design a large, complex program that:

• performs well, is reliable, is extensible, is backwards
compatible, …

© 2013 Gribble, Lazowska, Levy, Zahorjan 20

© 2013 Gribble, Lazowska, Levy, Zahorjan 21

Early structure: Monolithic

• Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

everything

user programs

hardware

OS

© 2013 Gribble, Lazowska, Levy, Zahorjan 22

Monolithic design

• Major advantage:
– cost of module interactions is low (procedure call)

• Disadvantages:
– hard to understand

– hard to modify

– unreliable (no isolation between system modules)

– hard to maintain

• What is the alternative?
– find a way to organize the OS in order to simplify its design

and implementation

© 2013 Gribble, Lazowska, Levy, Zahorjan 23

Layering

• The traditional approach is layering
– implement OS as a set of layers
– each layer presents an enhanced ‘virtual machine’ to the layer above

• The first description of this approach was Dijkstra’s THE system
– Layer 5: Job Managers

• Execute users’ programs

– Layer 4: Device Managers
• Handle devices and provide buffering

– Layer 3: Console Manager
• Implements virtual consoles

– Layer 2: Page Manager
• Implements virtual memories for each process

– Layer 1: Kernel
• Implements a virtual processor for each process

– Layer 0: Hardware

• Each layer can be tested and verified independently

© 2013 Gribble, Lazowska, Levy, Zahorjan 24

Problems with layering

• Imposes hierarchical structure
– but real systems are more complex:

• file system requires VM services (buffers)

• VM would like to use files for its backing store

– strict layering isn’t flexible enough

• Poor performance
– each layer crossing has overhead associated with it

• Disjunction between model and reality
– systems modeled as layers, but not really built that way

© 2013 Gribble, Lazowska, Levy, Zahorjan 25

Hardware Abstraction Layer

• An example of layering in modern
operating systems

• Goal: separates hardware-specific
routines from the “core” OS
– Provides portability

– Improves readability

Core OS
(file system,
scheduler,

system calls)

Hardware Abstraction
Layer

(device drivers,
assembly routines)

© 2013 Gribble, Lazowska, Levy, Zahorjan 26

Microkernels

• Introduced in the late 80’s, early 90’s
– recent resurgence of popularity

• Goal:
– minimize what goes in kernel

– organize rest of OS as user-level processes

• This results in:
– better reliability (isolation between components)

– ease of extension and customization

– poor performance (user/kernel boundary crossings)

• First microkernel system was Hydra (CMU, 1970)
– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS),

OS X (Apple)

2727

Microkernel structure illustrated

hardware

microkernel

system
processes

user
processes

low-level VM
communication

protection

processor
control

file system

threads

network

scheduling
paging

firefox powerpoint

apache

u
ser m

o
de

K
ern

e
l

m
o

de

photoshop
itunes word

© 2013 Gribble, Lazowska, Levy, Zahorjan

From Andy Tanenbaum 28

29From Andy Tanenbaum

30

• Transparently implement “hardware” in software

• Voilà, you can boot a “guest OS”

From http://port25.technet.com/

3131

Summary and Next Module

• Summary
– OS design has been a evolutionary process of trial and error.

Probably more error than success
– Successful OS designs have run the spectrum from

monolithic, to layered, to micro kernels, to virtual machine
monitors

– The role and design of an OS are still evolving
– It is impossible to pick one “correct” way to structure an OS

• Next module
– Processes, one of the most fundamental pieces in an OS
– What is a process, what does it do, and how does it do it

© 2013 Gribble, Lazowska, Levy, Zahorjan

