
CSE 451: Operating Systems
Winter 2021

Module 2
Kernel Abstraction

Gary Kimura
Mark Zbikowski

DEVELOPING AND DEBUGGING
LARGE SYSTEMS

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

Some Engineering Advice
• Debugging as Engineering

• Much of your time in this course will be spent debugging
– In industry, 50% of software dev is debugging
– Even more for kernel development

• How do you reduce time spent debugging?
– Produce working code with smallest effort

• Optimize a process involving you, code,
computer

• When at all possible, code and test changes
incrementally

The science of debugging
• Debugging as Science

• Understanding -> design -> code
– not the opposite

• Form a hypothesis that explains the bug
– Which tests work, which don’t. Why?
– Add tests to narrow possible outcomes

• Use best practices
– Always walk through your code line by line
– Module tests – narrow scope of where problem is
– Develop code in stages, with dummy replacements for

later functionality

HARDWARE MODES

Hardware Modes
• Who actually gets to control the hardware?
• The Application?

• Advantages
• Disadvantages (aka, what can possibly go wrong?)

• The Operating System?
• Acting on behalf of the application
• Advantages?
• Disadvantages?

Challenge: Protection using Restrictions
• How do we execute code with restricted privileges?

– Either because the code is buggy or if it might be
malicious

• Some examples:
– A script running in a web browser
– A program you just downloaded off the Internet
– A program you just wrote that you haven’t tested yet
– Or the program that gets stuck in an infinite loop

Hardware Support: Dual-Mode Operation
• Kernel mode

– Execution with the full privileges of the hardware
– Read/write to any memory, access any I/O device,

read/write any disk sector, send/read any packet
• User mode

– Limited privileges (How is this done?)
– Only those granted by the operating system kernel

• On the x86, mode stored in EFLAGS register
• On the MIPS, mode in the status register

Hardware Support: Dual-Mode Restrictions

• Privileged instructions
– Available to kernel
– Not available to user code

• Limits on memory accesses
– To prevent user code from overwriting the kernel
– To prevent user from reading data it shouldn’t

• Timer
– To regain control from a user program in a loop

• Safe way to switch from user mode to kernel mode, and
vice versa

Privileged instructions

• Examples
• Halt Processor
• Disable interrupts
• Change mode
• Load and store

• What should happen if a user program attempts to execute
a privileged instruction?
• An Exception is raised, and the OS takes control

Privileged
Privileged
Privileged
No, but there is a but…

How to use the two modes

• It is a little naïve by okay to say that the OS only runs in
kernel mode and user apps run in user mode.
• Is that why they’re called kernel mode and user mode?

• Important to understand when and how the system switches
between the modes.
• From Kernel Mode to User Mode
• From User Mode to Kernel Mode

Mode Switch (Kernel to User)
• Without getting into what is running here is generally

how one goes from kernel mode to user mode
1. New process/new thread start

• Jump to first instruction in program/thread
2. Return from interrupt, exception, system call

• Resume suspended execution
3. Process/thread context switch

• Resume some other process
4. User-level upcall (UNIX signal)

• Asynchronous notification to user program

Mode Switch (User to Kernel)
• From user mode to kernel mode

– Interrupts
• Triggered by timer and I/O devices

– Exceptions
• Triggered by unexpected program behavior or

malicious behavior!
– System calls (aka protected procedure call, or a trap)

• Request by program for kernel to do some operation
on its behalf

• Only limited # of very carefully coded entry points

Device Interrupts: Example

• Here is the situation: The OS kernel needs to
communicate with physical devices

• Devices operate asynchronously from the CPU
– One solution is polling: Kernel waits until I/O is done
– Another solution are Interrupts: Kernel can do other work

in the meantime
• Example: Device access to memory

1. Programmed I/O: CPU reads and writes to device
2. Device has Direct memory access (DMA)
3. When I/O completes the Device interrupts the CPU

How do Device Interrupts work?

• Where does the CPU run after an interrupt?
• What stack does it use?
• Is the work the CPU had been doing before the interrupt

lost forever?
• If not, how does the CPU know how to resume that

work? We’ll see

No

Kernel
Kernel Stack

Example of an Interrupt: Hardware Timer
Hardware device that periodically interrupts the processor

• Returns control to the kernel handler
• Interrupt frequency set by the kernel and not by user

code

Side note: Interrupts can be temporarily deferred by the
kernel

• But not by user code!
• Interrupt deferral crucial for implementing mutual

exclusion

How do we take interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Atomic transfer of control
– Single instruction to change:

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

Interrupt Vector
• Table set up by OS kernel; pointers to code to run on

different events

Interrupt Stack

• Per-processor, located in kernel (not user) memory

– Usually a process/thread has both: kernel and user
stack

• Why can’t the interrupt handler run on the stack of the
interrupted user process?

Interrupt Stack

Interrupt Masking

• Interrupt handler runs with interrupts off
– Re-enabled when interrupt completes

• OS kernel can also turn interrupts off
– Eg., when determining the next process/thread to run
– On x86

• CLI: disable interrrupts
• STI: enable interrupts
• Only applies to the current CPU (on a multicore)

• We’ll need this to implement synchronization in chapter 5

Interrupt Handlers

• Often part of a device driver
• Non-blocking, run to completion

– Minimum necessary to allow device to take next
interrupt

– Any waiting must be limited duration
– Wake up other threads to do any real work

• Linux: semaphore
• Rest of device driver runs as a kernel thread

Case Study: MIPS Interrupt/Trap

• Two entry points: TLB miss handler, everything else
• Save type: syscall, exception, interrupt

– And which type of interrupt/exception
• Save program counter: where to resume
• Save old mode, interruptable bits to status register
• Set mode bit to kernel
• Set interrupts disabled
• For memory faults

– Save virtual address and virtual page
• Jump to general exception handler

Case Study: x86 Interrupt
• Save current stack pointer
• Save current program counter
• Save current processor status word (condition codes)
• Switch to kernel stack; put SP, PC, PSW on stack
• Switch to kernel mode
• Vector through interrupt table
• Interrupt handler saves registers it might clobber

At end of Interrupt Handler
• Handler restores saved registers
• Atomically return to interrupted process/thread

– Restore program counter
– Restore program stack
– Restore processor status word/condition codes
– Switch to user mode

Summary: Entering the Kernel

As a rule of thumb the kernel gets executed (entered) through
interrupts, exceptions, and system calls.
• Interrupts – a device needs servicing; the OS will continue

the interrupted process when able
• Exceptions – a process did something that the OS needs to

fix
• System calls – a process is asking the OS to perform a

privileged operation

Exceptions and System calls serve a different scenario than
Interrupts, but share much of the same mechanism

Exceptions and System Calls

Examples of
exceptions

Examples of
system calls

• divide by zero
 overflow or underflow

• illegal Instruction
• load/store from a protected location

• open/create a file
• read/write from a file
• allocate memory (e.g., malloc)
 Sometimes these are handled in

user mode libraries

Dealing with Exceptions

• OS can choose to fix the program’s exception
• For example, make an illegal memory address legal

• OS can choose to alert the program of the exception
• For example, divide by zero

• OS can choose to terminate the program
• Are there other choices?

Dealing with System Calls

• Locate arguments
– In registers or on user stack
– Translate user addresses into kernel addresses

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back into user memory
– Translate kernel addresses into user addresses

MEMORY
LAYOUT

Simple Memory Protection

Towards Virtual Addresses

• Problems with base and bounds?

Virtual Addresses

• Translation done in
hardware, using a
table

• Table set up by
operating system
kernel

Division between User and Kernel memory

User virtual address
space:

Kernel virtual
address space:

0x00000000 and 0x7FFFFFFF

0x80000000 and 0xFFFFFFFF

HOW DO
WE BOOT
THIS
THING?

Booting

Next up

Processes: Chapter 3 (first part) and Chapter 4

