Module 1
Course Introduction

Gary Kimura
Mark Zbikowski
Course Staff

Instructors: Gary Kimura, Mark Zbikowski

TAs: Tom Lou, Nicolas Monsees, Shivam Singhal, Brennan Stein, Yu Xin
First things first

This only a test...

• Occasionally test zoom’s robustness and Gary’s history of breaking things
• But what if we crash our zoom session?
• Chat Bomb: Where is everyone located?
Course Details

• Information portals
 • Course webpage, Canvas, Class discussion board
• Class Prerequisites:
 • CSE332: Data Structures and Parallelism
 • CSE333: Systems Programming
 • CSE351: The Hardware/Software Interface
• Lectures (will be recorded) – Gary and Mark
 • Use chat, raise hand, or unmute to ask a question
• Projects – Lead by the TAs
 • 4 labs using xk (brush up on programming in C). Posted all at once, due about every two weeks
• Grading (subject to change)
 • Projects 50%, Midterm 20%, Final 30%
The Projects

• Start them early
• Four of them
• **Teams of two.** You’re likely to be happier if you form a team on your own than if we randomly assign them.
• Experience says that working remotely presents some challenges
 ➢ Four projects instead of five
 ➢ TAs are aware of this and are working on materials that could help
• Do not believe that passing the test cases means your code works...
 ➢ Sorry
• Grading mechanism
 ➢ TBD
Course Objectives

1. (One thing that I hope you learn from this class) How an OS is designed and built. To better know how to use the OS
2. Debugging large programs, adding new features to an existing (incomplete codebase)
3. Quote in the Cutler lab
 “Bugs: if you don’t put them in, you don’t have to take them out.”
4. Drinking from the firehose for the first few weeks
5. **Textbook**: academic head knowledge
6. **Lectures**: enhance and supplement the textbook and do deep dives into some specific implementation issues.
7. **Projects**: get hand dirty, learn by doing
Course Roadmap (subject to change)

1. Chapter 2 Kernel Abstraction
2. Chapter 4 Concurrency
3. Chapter 5 and 6 Synchronization
4. Chapter 7 Scheduling
5. Chapter 8 and 9 Memory Management
6. Not in textbook Basic I/O organization
7. Chapter 11, 12, 13, 14 Storage
8. Wrap up loose ends
An important underlying concept
Policy vs. Mechanism

- **Policy**: is what you are trying to achieve
 - All the programs running on a computer get equal access to the CPU

- **Mechanism**: is how you achieve it
 - Use timers and context switching to share the CPU

- The lectures and textbook is mostly about policy, the projects deal with mechanism
Operating System Mission Statement

- Class exercise, write an OS mission statement (e.g., The mission statement for the UW CSE School might be to prepare students in the art of computer usage for the coming century.)

One possible mission of the OS: provide a means for programs to effortlessly utilize the capability of the computer system
What is an operating system?

- Software to manage a computer’s resources for its users and applications
Operating System Roles

• **Referee:**
 – Ensures that everyone plays by the rules
 – Resource allocation among users, applications
 – Isolation of different users, applications from each other
 – Communication between users, applications

• **Illusionist:**
 – Each application appears to have the entire machine to itself
 – Infinite number of processors, (near) infinite amount of memory, reliable storage, reliable network transport

• **Glue:**
 – Libraries, user interface widgets, ...
Example: File Systems

• **Referee:**
 – Prevent users from accessing each other’s files without permission
 – Even after a file is deleting and its space re-used

• **Illusionist:**
 – Files can grow (nearly) arbitrarily large
 – Files persist even when the machine crashes in the middle of a save

• **Glue:**
 – Named directories, printf, ...
OS Challenges

• Portability
 – For programs:
 • Application programming interface (API)
 • Abstract virtual machine (AVM)
 – For the operating system
 • Hardware abstraction layer
More OS Challenges

• **Reliability**
 – Does the system do what it was designed to do?

• **Availability**
 – What portion of the time is the system working?
 – Mean Time To Failure (MTTF), Mean Time to Repair

• **Security**
 – Can the system be compromised by an attacker?

• **Privacy**
 – Data is accessible only to authorized users
Even more OS Challenges

• **Performance**
 – Latency/response time
 • How long does an operation take to complete?
 – Throughput
 • How many operations can be done per unit of time?
 – Overhead
 • How much extra work is done by the OS?
 – Fairness
 • How equal is the performance received by different users?
 – Predictability
 • How consistent is the performance over time?

• **Backward and Forward Compatibility**
 – Can it run legacy apps?
 – How to accommodate growing or advancing Hardware. e.g., word size, or memory size.
Operating System History

• **Batch to timeshare**

• **Single User to multiuser to single user (PC) to multiuser (servers, etc.)**

• Cost of **computer time** compared to **people time**

• **Single processor to multiple processors to distributed systems**
Early Operating Systems: Computers Very Expensive

• One application at a time
 – Had complete control of hardware
 – OS was runtime library
 – Users would stand in line to use the computer

• Batch systems
 – Keep CPU busy by having a queue of jobs
 – OS would load next job while current one runs
 – Users would submit jobs, and wait, and wait, and wait, and
Time-Sharing Operating Systems: Computers and People Expensive

• Multiple users on computer at same time
 – Multiprogramming: run multiple programs at same time
 – Interactive performance: try to complete everyone’s tasks quickly
 – As computers became cheaper, more important to optimize for user time, not computer time
DEC PDP 11 (mini-computer)
(Tape Drive, Removable Hard Drive,
Control Panel, Operator Console)
More PDP 11
Today’s Operating Systems: Computers Cheap

• Smartphones
• Embedded systems
• Internet of Things
• Laptops
• Tablets
• Virtual machines
• Data center servers
Tomorrow’s Operating Systems:
Everything gets Bigger*

• Giant-scale data centers
• Increasing numbers of processors per computer
• Increasing numbers of computers per user
• Very large scale storage

*And more compact
Computer Performance Over Time

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniprocessor speed (MIPS)</td>
<td>1</td>
<td>200</td>
<td>2500</td>
<td>2.5K</td>
</tr>
<tr>
<td>CPUs per computer</td>
<td>1</td>
<td>1</td>
<td>10+</td>
<td>10+</td>
</tr>
<tr>
<td>Processor MIPS/$</td>
<td>$100K</td>
<td>$25</td>
<td>$0.20</td>
<td>500K</td>
</tr>
<tr>
<td>DRAM Capacity (MiB)/$</td>
<td>0.002</td>
<td>2</td>
<td>1K</td>
<td>500K</td>
</tr>
<tr>
<td>Disk Capacity (GiB)/$</td>
<td>0.003</td>
<td>7</td>
<td>25K</td>
<td>10M</td>
</tr>
<tr>
<td>Home Internet</td>
<td>300 bps</td>
<td>256 Kbps</td>
<td>20 Mbps</td>
<td>100K</td>
</tr>
<tr>
<td>Machine room network</td>
<td>10 Mbps (shared)</td>
<td>100 Mbps (switched)</td>
<td>10 Gbps (switched)</td>
<td>1000</td>
</tr>
<tr>
<td>Ratio of users to computers</td>
<td>100:1</td>
<td>1:1</td>
<td>1:several</td>
<td>100+</td>
</tr>
</tbody>
</table>

- But what hasn’t increased over time?
- Have we reached certain limits?
Next Up (Chapter 2 & 3) Kernel Abstractions

Roadmap for next few days

- Hardware modes
- Interrupts, exceptions, and syscalls (traps)
- Memory layout
- Booting the OS
- Processes and Process Management
The Dreaded Blue Screen

A problem has been detected and Windows has been shutdown to prevent damage to your computer.

DRIVER_IRQL_NOT_LESS_OR_EQUAL

If this is the first time you’ve seen this stop error screen, restart your computer. If this screen appears again, follow these steps:

Check to make sure any new hardware or software is properly installed. If this is a new installation, ask your hardware or software manufacturer for any Windows updates you might need.

If problems continue, disable or remove any newly installed hardware or software. Disable BIOS memory options such as caching or shadowing. If you need to use Safe Mode to remove or disable components, restart your computer, press F8 to select Advanced Startup Options, and then select Safe Mode.

Technical information:

*** STOP: 0x000000d1 (0x0000000c,0x00000002,0x00000000,0xf86b5a89)

*** gv3.sys - Address F86B5A89 base at F86B5000, DateStamp 3dd9919eb

Beginning dump of physical memory:
Physical memory dump complete.
Contact your system administrator or technical support group for further assistance.