
CSE 451: Operating Systems

Spring 2021

Module 12

Log-Structured File Systems

John Zahorjan

LFS inspiration
• Memory caching is generally effective

• Result is that most physical disk operations are writes
• Can delay writing only so long
• Writes to journal (redo log) are writes

• Suppose all writes to disk were written as a log (i.e., appended)
• log includes modified data blocks and modified metadata blocks
• buffer a huge block (“segment”) in memory
• when full, write it to disk in one efficient contiguous transfer

• So the disk contains a single long log of changes, consisting of threaded
segments

• Reminds you of journaling?
• Yes, except that there is no “home location” for data or metadata
• The log is all there is

LFS basic approach

• Use the disk as a log
• A log is a data structure that is written only at one end

• If the disk were managed as a log
• [spinning] there would be effectively no seeks (for writes)
• [ssd] you’d be updating an entire erasure block every write
• [ssd] you’d (hope to) be spreading updates across the device

• New data and metadata (i-nodes, directories) are accumulated in
the buffer cache, then written all at once in large blocks

• If you write enough data at once, you can achieve close to the
transfer rate of the device
• both spinning and SSD

LFS vs. FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

5

LFS Challenges

• Locating data on the disk
• FFS place inodes in a well-known location
• LFS writes data “at the end of the log”

• Managing free space on the disk
• Disk is finite, and therefore log must be finite
• So cannot just keep appending to log, ad infinitum!
• need to recover space used by deleted blocks in log
• need to fill holes in segments created by recovered blocks

• why?
• “cleaning”

• Note:
• in-memory caching is the same as before
• reads that go to disk are the same as FFS, once you find the i-node
• like everything else, i-nodes are cached

6

LFS: Locating data and i-nodes

• Data
• LFS uses i-nodes to locate data blocks

• just like FFS

• i-nodes
• i-nodes are appended to end of log, so are moving around

• not at all like FFS
• i-node number is no longer an index in an array, it’s just a name

• How to locate i-node on disk?
• Use another level of indirection

• i-node maps
• i-node # → i-node location

7

LFS: Locating the i-node map

• Use another level of indirection
• i-node maps: i-node # → i-node location
• the map is indexed by the i-node #
• i-node map is a logical structure, kept on disk
• it’s updated often, so...

• don’t store as an array in a fixed location, instead
• write changes to it to the log (!)

• How do you find the i-node map?
• location of i-node map blocks are kept in a checkpoint region
• checkpoint region has a fixed location

• two copies, actually
• why?

• cache these structures in memory for performance

LFS vs. FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

i-node map

checkpoint
region

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

9

LFS: File reads and writes

• Reads are no different than in FS/FFS, once we find the i-node for
the file
• The i-node map, which is cached in memory, gets you to the i-node, which

gets you to the blocks

• Every write causes new blocks to be added to the tail end of the
current “segment buffer” in memory
• When the segment is full, it’s written to disk

10

LFS: Free space management

• Writing segments to the log eats up disk space

• Over time, segments in the log become fragmented as we replace
old blocks of files with new blocks
• live i-nodes no longer point to blocks, but those blocks still occupy their

space in the log
• “dead i-nodes” provide opportunity to save versions of file system

• Garbage-collect segments
• coalesce “live” data from sparsely populated segments into fully populated

segments
• results in a “clean segment” that can be fully written / reused

11

LFS: Segment cleaning

• Cleaning is an issue
• costly overhead, when do you do it?

• A cleaner daemon cleans old segments, based on
• utilization: how much is to be gained by cleaning?
• age: how likely is the segment to change soon?

LFS summary

• As caches get big, most reads will be satisfied from the cache
• No matter how you cache write operations, though, they are eventually going to have to get

back to disk
• Thus, most disk traffic will be write traffic

• If you eventually put blocks (i-nodes, file content blocks) back where they
came from, then even if you schedule disk writes cleverly, you’re effectively
doing random writes (bad)

• Instead, do all writes as appends to disk log
• A modest amount of data is located in a fixed location, so that you can find the i-nodes, and

is updated only occasionally

• What happens when a crash occurs?
• Suppose you have to read a file?
• How do you prevent overflowing the disk?
• What happens if you crash while writing the checkpoint region?

