
CSE 451: Operating Systems

Autumn 2020

Module 11

Journaling File Systems

John Zahorjan

Block Cache

• Cache (often called buffer cache) is just part of system memory
• It’s system-wide, shared by all processes
• Even a relatively small cache can be very effective
• File systems can “read-ahead” into the cache, increasing

effectiveness even further
• Note that it is a block cache, not a file data cache

• it operates below the level of the file systems

• Note: there can also be other caches, e.g., a directory cache
• performance
• uniformity (as part of VFS)

Block Cache and Write-Back

• Cache is generally write back

• Cache is meant to absorb many writes to a single/few blocks and
turn them into a single IO operation

• same with reads, but we’re interested in “delayed writes” here...

• File system “sync”s the cache based on time and activity
• It also provides a sync operation for applications to call, if they want

• Updates since last sync are lost when system crashes

Writes, Caches, and Crashes
• Updates since last sync are lost when system crashes

• Not all writes are of application data
• The file system needs to update metadata (in inodes, etc.)

• File creation example:
• Have to allocate an i-node (write i-node map)
• Have to initialize new i-node (write i-node)
• Have to create a directory entry (write directory i-node, directory data

block, and data map if had to allocate new block for directory)
• Have to update superblock (free data and i-node counts)

• Those four items are in (at least) four different disk blocks

Writes, Caches, and Crashes
• The file system itself may have consistency problems when a crash occurs

between syncs
• only some updated blocks make it to disk, but not others

• Example issues:
• i-nodes and file blocks can get out of sync

• files contain nonsense
• block free map and what the i-nodes claim can get out of sync

• blocks are lost (not free but not on any i-node index)
• blocks are both free and in some i-node’s index

• directory entry names an i-node whose updated contents were lost in crash
• two different i-nodes index the same block(s)
• etc.

• The problem is potentially much worse than losing the last few minutes of
updates to files that were being worked on

• If the file system metadata is corrupted, you can lose everything

Anticipating crashes
• Life has taught us we should assume things will go wrong...
• In this module we’ll assume a block write either happens or it doesn’t

• A block is never written incorrectly
• We’ll also assume “fail-stop” behavior

• Can I achieve robust updates by picking an order for the writes?
• That is, is there an update order for which an arbitrary crash leaves the file

system in a “not too bad” state?

• File creation example:
• Have to allocate an i-node (write i-node map)
• Have to initialize new i-node (write i-node)
• Have to create a directory entry (write directory i-node, directory data block, and
data map if had to allocate new block for directory)
• Have to update superblock (free data and i-node counts)

• What’s the right order?

Can I Recover After A Crash? fsck
• File system may be in an inconsistent state

• i-node map may indicate that an i-node is in use but no directory entry refers to it, or
• directory entry may refer to an i-node that appears to be free, or
• i-node may refer to data blocks that appear to be free (in the block map), or
• data blocks may appear to be in use but aren’t referenced by any i-node, or
• a data block may be referenced by two or more i-nodes, or
• ...

• fsck: Imagine writing a utility that scans the file system for consistency
• all blocks not referenced in any way should be marked free
• all inodes not referenced by any directory should be marked free
• each data block in use should be used by exactly one i-node
• i-node reference counts should be accurate
• etc.

• Have to do these checks in “file order” not disk order
• slow! really really slow!

• Have to apply heuristic recovery methods that may or may not work
• All I know for sure is current values on the disk
• I have to guess what values would have been had either the full update succeeded or none

of it had been written

Journaling File Systems
• Goal: Make sure on-disk data is always in a consistent state

• Note: A “consistent state” isn’t the same as “no data has been lost”

• How?
• update metadata [and, optionally, file data] transactionally

• “all or nothing”
• atomically

• if a crash occurs, you may lose some work, but the file system structures on
disk will be in a consistent state

• Achieve this by writing a “journal” of updates you intend to make before
attempting the updates themselves

• after a crash, quickly get it to a consistent state by using the transaction
log/journal

• cost is proportional to size of log, not the size of the disk

Where is the Data?

• In the file systems we have seen already, “the most recently written
data” is in two places:

• On disk
• In in-memory caches

• In a journaling file system, the data may be in three places:
• The in-memory cache
• The “home copy” on disk
• A journal entry on disk
• (Note: The device may have its own cache, which complicates things...)

• The journal contains updates to be made to the home copy blocks
• Note that those updates are in the in-memory cache so there’s no confusion

if app accesses those blocks

Redo log

• Log: a chronologically ordered, append-only file containing log records
• <start t>

• transaction t has begun
• <t,x,v>

• transaction t has updated block x and its new value is v
• log block “diffs” instead of full blocks

• this operation is idempotent
• <commit t>

• transaction t has committed

• A transaction whose commit record makes it into the on-disk journal
survives a crash

• A transaction whose commit record doesn’t make it will be discarded

If a crash occurs...

• Read and process the log’s operations

• Redo committed transactions
• Walk the log in order and re-execute updates from all committed

transactions
• Aside: note that update (write) is idempotent: can be done any non-zero

number of times with the same result.
• Why does that matter? (It does!)

• Ignore uncommitted transactions
• It’s as though the crash occurred a tiny bit earlier…
• Sure, you lose some work (updates), but the file system isn’t corrupted

What about performance?

• Seems like you have to do two writes for each update
• one for journal entry and one to home location
• that can’t be good…

• Most reads/writes are absorbed by the in-memory cache
• You must eventually write, though

• Imagine a burst of file creation

• The journal can help performance
• write big segments of journal entries sequentially on the disk
• (each entry indicates the new value of some disk block)
• sequential writes are much faster than random writes
• At your leisure, push the updates (in order) to the home copies and reclaim

the journal space

Managing the Log Space

• A “cleaner” thread walks the log in order, updating the home
locations of updates in each transaction

• Note that idempotence is important here – may crash while cleaning is going
on

• Once a transaction has been reflected to the home blocks, it can be
deleted from the log

Impact on performance

• The log is a big contiguous write
• very efficient

• And you do fewer synchronous writes
• these are very costly in terms of performance

• So journaling file systems can actually improve performance

• As well as making recovery very efficient

Summary Questions

• What’s the point of a journaling file system?

• Can data be lost if the system crashes?
• Can data be lost if the disk device fails?

• Can file system meta-data be lost if the system crashes?

• What’s the performance impact of journaling (and why)?

• Is journaling only for spinning disks?
Only for SSDs?

