
CSE 451: Operating Systems

Spring 2021

Module 4

Processes

John Zahorjan

Lecture Questions
• What is as process?
• What lower level resources are hidden/simplified by the process

abstraction?
• Which aspects of process semantics most commonly important to

software design issues? to system management issues?
• Why is process creation broken into fork() and then exec()?
• How do you make fork() less expensive?
• What does a shell do?
• How can processes communicate with each other? why would you

want them to?
• Why might you want additional abstraction built above processes?

What’s the relationship of “user” to “process”? Is “user” the
fundamental abstraction?

What is a “process”?

• The process is the OS’s abstraction for execution
• A process is “a program in execution”

• Simplest (classic) case: a sequential process
• An address space (an abstraction of memory)
• A single thread of execution (an abstraction of a single core)

• Traditionally, a sequential process is:
• The unit of execution
• The unit of scheduling
• The unit of failure
• The dynamic (active) execution context

• vs. the program – static, just a bunch of bytes

address space

thread

What’s “in” a process?

• A process consists of (at least):
• An address space, containing

• the code (instructions) for the running program
• the data for the running program (static data, heap data, stack)

• CPU state, consisting of
• The program counter (PC), indicating the next instruction
• The stack pointer (SP)
• Other general purpose register (GPR) values

• Each thread has its own PC, SP, and GPR values

• A set of OS resources
• open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run the program
• or to resume it, if it’s interrupted at some point

A process’s address space (idealized)

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

The OS’s process namespace

• (Like most things, the particulars depend on the specific OS, but the
principles are general)

• The name for a process is called a process ID (PID)
• an integer

• The PID namespace is global to the system
• Only one process at a time has a particular PID

• Operations that create processes return a PID
• E.g., fork()

• Operations on processes take PIDs as an argument
• E.g., kill(), wait(), nice()

Representation of processes by the OS
• The OS maintains a data structure to keep track of a process’s state

• Called the process control block (PCB) or process descriptor
• Identified by the PID

• OS keeps all of a process’s execution state in (or linked from) the PCB when
the process isn’t running

• CPU state (PC, SP, registers, etc.) is transferred out of the hardware registers into
the PCB when execution is suspended (transition to blocked or running states)

• When a process is running, its state is spread between the PCB and the
CPU

• Note: It’s natural to think that there must be some esoteric techniques
being used

• Nope…
• Except that xk uses some data structures we’re pretty sure you wouldn’t choose…

The Process Control Block

• The PCB is a data structure with many, many fields:
• process ID (PID)
• parent process ID (PPID)
• execution state
• program counter, stack pointer, registers
• address space info
• user id (uid), group id (gid)
• scheduling priority
• accounting info
• pointers for state queue
• …

PCBs and CPU state

• When a process is running, its CPU state is on the CPU
• PC, SP, registers
• CPU contains current values

• When the OS gets control because of a …
• Trap: Program executes a syscall
• Exception: Program does something unexpected (e.g., page fault)
• Interrupt: A hardware device requests service

the OS saves the CPU state of the running process (for instance, in that
process’s PCB)

(In xk, the CPU register state is saved at the bottom of the kernel stack
associated with the process)

• When the OS returns the process to the running state, it loads the
hardware registers with values from that process’s PCB – general
purpose registers, stack pointer, instruction pointer

• The act of switching the CPU from one process to another is called a
context switch

• systems may do 1000s of switches/sec.
• takes a few microseconds on today’s hardware

• See hw 0

• Choosing which process to run next is called scheduling

This is (a
simplification of)

what each of
those PCBs looks

like inside!

Process ID

Pointer to parent

List of children

Process state

Pointer to address space descriptor

Program counter
stack pointer

(all) register values

uid (user id)
gid (group id)

euid (effective user id)

Open file list

Scheduling priority

Accounting info

Pointers for state queues

Exit (“return”) code value

Scope of OS Resources

• OS resources are things like open file tables, network connection points
(sockets), pipes, shared memory regions, …

• Each requires its own descriptor block

• If the block is embedded in a PCB, the scope of that resource can be only
that one process

• If the block is stored separately and the PCB contains a reference
(pointer) to it, the resource can be shared

• What’s shared and what isn’t is part of OS API design

Allocation of OS Resources
• How should process control blocks be allocated?

• Statically?
• A fixed size block of memory is allocated by declaring an array of fixed size in the code
• A region of memory is allocated during boot
• Why would you much rather do the latter, if you’re going to allocate statically?

• Dynamically?
• At the extreme, allocate space for a PCB each time a process is created
• Free a PCB each time a process terminates

• Possibly cache free PCBs to avoid allocation/deallocation overheads

• Which should the OS use?

• You have to worry about running out of memory
• What to do then?
• Can’t start new process...

• Means you can’t bring up a tool that kills an old process
• Programmer error can exhaust all system memory...

The OS kernel is not a process
• (The x86 architecture supports switching “task” as part of the hardware action

on entry to the OS)
• But xk (and most OS’s) basically work around that feature

• On entry to the OS, the CPU is still running in the context of the process
that was running

• Address space
• Registers (to be saved)
• Current PCB

• On exit back to user level, the context of dispatched process has been re-
established

• There’s a brief moment in between when “it’s just code”
• The CPU doesn’t know anything about processes…

PCB Chaining (except in xk)
• In “real systems” the PCB contains a pointer field that allows the PCB to be put on (a single,

arbitrary) linked list

• For instance, there might be a linked list of processes in the runnable state (i.e., waiting for the
cpu)

• This is often called “the run queue”

• There might be a linked list of processes blocked on disk 2 (either waiting for an operation to
complete or else to initiate one)

• Every blocked processes is on some list
• Every blocked process is on exactly one list

• You can be blocked on only one thing (because when you block on the first thing you can’t execute code to
block on the second)

• As usual, such a simple constraint is too confining, and so there’s a way to work around it
(select/poll/epoll)

0x3CF6E0

PCB Chaining in xk

• xk uses a “simpler” scheme
• A statically allocated array of PCBs (like always)
• A field that can hold a 32-bit value

• The value is logically the id of a list
• We need the id’s to be unique
• Use the address of something – the thing that would hold the head pointer of a linked list in a normal

implementation

• To understand a “list” of PCBs, xk scans the entire array of PCBs looking for a particular value
in the special address field

0x3CF6E0 0x3CF6E0 0x2C04400x000000

Process execution states

• Each process has an execution state that indicates what it’s currently
doing

• ready: waiting to be assigned a core
• could run if the OS were to decide it wanted to assign a core

• running: executing on a core
• it’s the process that currently controls a core

• blocked (aka “waiting”): waiting for an event
• e.g., I/O completion, or a message from another process or completion of another

process
• cannot make progress until the event happens (so not eligible to be given a core)
• Note: blocking is an important construct at the app programming level

• What’s the alternative?

• As a process executes, it moves from state to state
• UNIX: run ps, STAT column shows current state
• which state is a process in most of the time?

Process states and state transitions

running

ready

blocked

trap or exception
(I/O, page fault,

etc.)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

You can create
and destroy
processes!

create

terminate
zombie

State queues

• The OS maintains a collection of queues that represent the state of
all processes in the system

• each PCB is queued onto a state queue according to the current state of the
process it represents

• as a process changes state, its PCB is unlinked from one queue, and linked
onto another

State queues

• There may be many wait queues, one for each type of wait
(particular device, timer, message, …)

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are PCBs

PCBs and state queues

• PCBs are data structures
• Located in OS memory

• When a process is created:
• OS allocates a PCB for it
• OS initializes PCB
• (OS does other things not related to the PCB)
• OS puts PCB on the correct queue

• As a process computes:
• OS moves its PCB from queue to queue

• When a process is terminated:
• PCB may be retained for a while…
• eventually, OS deallocates the PCB

Process creation

• New processes are created by existing processes
• creator is called the parent
• created process is called the child

• UNIX: do ps, look for PPID field
• what creates the first process, and when?

• $ ps –ejH
• prints process tree

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Process Creation Semantics
• When we create a process, we have to “communicate” to it what program it should run

• Name of an executable file
• CREATE(path-to-executable)

• With that information the OS can create and initialize an address space and set the PC to
entry point address

• But there’s more to a process than just the address space and PC

• Examples:
• If program reads a file, which file should it read?
• If program writes output, to what device should it write it?
• As what user should the program run?
• What “environment” (a map from text key to text value) should it have?
• …

• Who sets that information?
• The process, once it starts running?
• The “parent process” that creates the “child process” ?
• The parent of the parent process?
• The user?

Process Creation: Customization

Creating
Process
(Parent)

Grandparent

“Controlling
terminal”

…

Process Creation: Customization

Creating
Process
(Parent)

OS

Child
Process

create(exe,args)

child pid

Grandparent

“Controlling
terminal”

…

Process Creation: Customization

Creating
Process
(Parent)

OS

editor

create(editor,fname)

child pid

Grandparent

“Controlling
terminal”

…

“An app” might be structured as many processes

Process Creation: Customization

Creating
Process
(Parent)

OS

editor

create(editor,fname)

child pid

Grandparent

“Controlling
terminal”

…

“An app” might be structured as many processes

Process Creation: Customization

Creating
Process
(Parent)

OS

editor

create(editor,fname)

child pid

Grandparent

“Controlling
terminal”

…

“An app” might be structured as many processes

This is something like the use of global
variables in C programs to solve a similar
problem when communicating information
through multiple layers of procedure call

$ echo $EDITOR
emacs

Process Creation: Inheritance

Creating
Process
(Parent)

OS

editor

create(editor,fname)

child pid

Grandparent

“Controlling
terminal”

…

“An app” might be structured as many processes

Environment Variables

Process Meta-data

Process creation semantics

• (Depending on the OS) child processes inherit certain attributes of
the parent

• Examples:
• Open file table: implies stdin/stdout/stderr
• On some systems, resource allocation to parent may be divided among

children

• (In Unix) when a child is created, the parent may either wait for the
child to finish, or continue in parallel

• This is a “policy” decision
• Who should make it?
• How?

UNIX process creation details
• UNIX process creation through fork() system call

• creates and initializes a new PCB
• initializes kernel resources of new process with resources of parent (e.g., open

files)
• initializes PC, SP to be same as parent

• creates a new address space
• initializes new address space with a copy of the entire contents of the

parent’s address space
• places new PCB on the ready queue

• the fork() system call “returns twice”
• once into the parent, and once into the child
• value returned from call depends...

• returns the child’s PID to the parent
• returns 0 to the child

• fork() = “make a copy of me in my current state”

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

$./myProgram

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

$./myProgram

testparent – use of fork()

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
char *name = argv[0];
int pid = fork();
if (pid == 0) {

printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

}
}

testparent output

spinlock% gcc -o testparent testparent.c

spinlock% ./testparent

My child is 486

Child of testparent is 0

spinlock% ./testparent

Child of testparent is 0

My child is 571

fork() then exec()
• Q: So how do we start a new program?
• A: First fork, then exec

• int exec(char * prog, char * argv[])

• exec()
• note: exec does not create a new process!

• use fork() for that
• the current process is blocked

• made non-runnable
• not on any list (but is “remembered” as part of OS code path functioning)

• The process address space is replaced by one in which program ‘prog’ has
been loaded

• initializes hardware context, args for new program
• sets PC to entry point, sets SP to bottom of empty stack

• places existing PCB onto ready queue

• So, to run a new program:
• fork()
• Child process does an exec()
• Parent either waits for the child to complete, or not

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

$./myProgram

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

$./myProgram

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

$./myProgram

After exec of
./myProgram

Why fork/exec?

Parent
Process

State

Parent
Process

State

child
executable

fork

exec()

Making process creation faster

• The semantics of fork() say the child’s address space is a copy of the
parent’s

• Implementing fork() that way is slow
• Have to set up child’s page tables to map new address space
• Have to copy parent’s address space contents into child’s address space

• Which you are likely to immediately blow away with an exec()
• Have to allocate physical memory for the new address space

Method 1: vfork()

• vfork() is the older (now uncommon) of the two approaches we’ll discuss

• Instead of “child’s address space is a copy of the parent’s,” the semantics are
that the “child’s address space is the parent’s”

• There is a terrible race condition!
• Only sometimes works
• The sometimes is a pretty common case

• Forking process has to “promise” that its code won’t modify the address
space in the child before doing before doing an exec()

• Unenforced! You use vfork() at your own peril

• When exec() is called, a new address space is created and it’s loaded with the
new executable

• Saves wasted effort of duplicating parent’s address space, just to immediately
overwrite it in child

• Parent is blocked until exec() is executed by child

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child
PCB

Vfork()

Page
Tables Physical

Memory

Method 2: copy-on-write (COW)

• Retains the original semantics, but copies “only what is necessary”
rather than the entire address space

• On fork():
• Create a new address space
• Initialize new page tables with same mappings as the parent’s (i.e., they both

point to the same physical memory)
• No copying of address space contents have occurred at this point – with the sole

exception of the top page of the stack
• Set both parent and child page tables to make all pages read-only
• If either parent or child writes to memory, an exception occurs
• When exception occurs, OS copies the page, adjusts page tables, and makes

both corresponding pages writable

• It is common for the child process to exec() soon after it is created

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child
PCB

(cow) fork()

RO Page
Tables

Child address
space

(code, static
data, heap,

stack)

RO Page
Tables

Unix Shells
• Shells are just user-level programs

• What’s that mean?

• They’re mainly oriented towards launching other programs
• Using fork() / exec()

• They typically have few “built-in” commands
• ls, cat, etc. are executables, opaque to the shell
• (What must be built in?)

• Shells usually offer ways to build “shell scripts”
• E.g., some looping construct
• You can view everything you type into a shell as a program that is being

simultaneously created and executed
• This is why programmers have traditional liked shells and users have traditionally liked

clicking

UNIX shells – basic operation

this is the main idea, but details are lacking…

int main(int argc, char **argv)

{

while (1) {

printf (“$ “);

char *cmd = get_next_command();

int pid = fork();

if (pid == 0) {

exec(cmd);

panic(“exec failed!”);

} else {

wait(pid);

}

}

}

Unix Shells: Jobs / Redirection

• Shells usually offer ways to make “jobs” – assemblages of executions
• ls | grep *.c | less
• pushd sub && make && popd
• pushd sub; make; popd

• One way the shell helps you compose jobs is by input-output
redirection

• You can make the output of one program the input of another, without ever
writing to a file

Input/output redirection

• $./myprog < input.txt > output.txt

• fork() is key to making this work
• The input and output files are set by the parent (the shell), not the child (myprog)

• Each process has an open file table
• by (universal) convention:

• 0: stdin
• 1: stdout
• 2: stderr
• …

• A child process inherits the parent’s open file table

• Redirection: the shell code…
• fork()
• child (still running shell code) opens input.txt as stdin and output.txt as stdout
• child exec()’s ./myprog
• parent calls wait() to suspend execution until child terminates

Example of Deferring Policy
• The basic mechanisms we’ve seen embed a policy decision:

• A forked process inherits the user id (uid) of the parent process
• Motivation: security

• The system “trusts you” to do only the things you’re allowed to do, and nothing
more

• But there are circumstances where that decision gets in the way
• Example: how do I change my own password?

• Have to update some privileged data somewhere…

• Sometimes we want to “trust the code” rather than the user
• Privileges should be associated with the executable, not who is invoking it
• Example: passwd executable

[attu8] ~> ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 33600 Apr 6 2020 /usr/bin/passwd

Linux user id’s

• Real uid – launching user
• Effective uid – uid in use right now
• Saved uid – what it was before I changed it

• Set of syscall’s to set and get these values
• Set calls fail if you lack permission to change to the uid you’re trying

to change to

• “setuid executable” – executables can be marked in the file system so
that when run their uid is that of the file owner, not the uid of the
process that launches them

Example executables…

$ ls -l
total 76
-rw-rw-r-- 1 zahorjan zahorjan 236 Oct 19 09:42 makefile
-rwsrwxr-x 1 guest zahorjan 16960 Oct 19 09:44 suidProgram
-rw-rw-r-- 1 zahorjan zahorjan 488 Oct 19 09:43 suidProgram.c
-rwsrwxr-x 1 root zahorjan 17096 Oct 19 09:44 suidRootProgram
-rw-rw-r-- 1 zahorjan zahorjan 880 Oct 19 09:44 suidRootProgram.c
-rwxrwxr-x 1 zahorjan zahorjan 17176 Oct 19 09:44 uidProgram
-rw-rw-r-- 1 zahorjan zahorjan 822 Oct 19 09:44 uidProgram.c

Example program
• uidprogram.c

• Prints its real, effective, and saved uids
• Forks then execs suidProgram
• Forks then execs suidRootProgram

• suidProgram.c
• Executable file is owned by account “guest” and is marked setuid
• Prints its real, effective, and saved uid’s

• suidRootProgram.c
• Executable file is owned by root and is marked setuid
• Prints uids on launch
• Sets euid to user (drops root)
• Sets euid back to root (recovers root – allowed because saved uid is root)
• Permanently drops root (by calling setuid with user uid)

Example program output:
uidProgram:
real uid = 1000
effec uid = 1000
saved uid = 1000

suidProgram:
real uid = 1000
effec uid = 1004
saved uid = 1004

suidRootProgram:
uids as launched:
real uid = 1000
effec uid = 0
saved uid = 0
uids after switching to user:
real uid = 1000
effec uid = 1000
saved uid = 0
uids after switching back to root:
real uid = 1000
effec uid = 0
saved uid = 0
uids after permanently dropping root:
real uid = 1000
effec uid = 1000
saved uid = 1000

Example Program Source

• You can definitely view and compile the source
• You won’t be able to set things up to run as intended unless you have

(basically) root permission, though
• You have to chown (change owner) some files and chmod (to mark as setuid)

some executables

• https://courses.cs.washington.edu/courses/cse451/21sp/csenetid/ui
dPrograms/

Linux Job Control
• A “job” is an assemblage of processes

• $ cat main.c
• $ cat main.c | grep –w total | less

• Key concepts:
• Controlling terminal

• Follow parent PIDs up to “the top”
• What is that process’s stdin/stdout/stderr connected to?
• Why does it matter?

• Session
• A way to group things that should be terminated if the controlling terminal goes away
• “Session leader” – process that created the session
• Sessions are named by integers

• Must be unique
• Use PID of the session leader

• A forked process inherits the session of its parent
• A process can set its own session id (setsid)

• Unless it’s a “process group leader”

Linux Job Control

• Process Group
• $ myprog | myotherprog | grep B
• A process inherits the process group of its parent
• A process can set its process group (setpgid)
• The “process group leader” is the process that created the group
• The process group’s name is an integer

• The PID of the creating process

• Why have process groups?
• Ctrl-C sends a SIGINT
• A signal can be sent to a process group

• Sent to each process in the group

Inter-Process Communication (IPC)

• Processes provide isolation (protection) – great!

• But sometimes you want processes to communicate / cooperate

• Inter-process communication (IPC)

• Simple example: How can one process “provide input” to another?

What If Processes Want to Cooperate

• How can one process “provide input” to another?

1. Send command line arguments (argv values)
• available only to parent process

2. Communicate through files
• one writes and the other reads

• synchronization?

3. Optimize that: pipes
• use memory buffers, not files
• we’ll see that this works only if the processes are related (usually siblings)

4. Environment variables
• Why?

IPC (cont).

• Additional mechanisms:
5. Named pipes

• like pipes, except that unrelated processes can use them
• need a namespace

• use file system names
• man 3 mkfifo

6. Named shared memory regions
• shm_open() followed by mmap()
• “cut out the middle man”

7. sockets / Internet protocols
• robust – prepared to communicate using a heavyweight middle man!
• optimized when endpoints are on the same machine

IPC: “exception handling”
• Processes can register event handlers

– Feels a lot like event handlers in Java, which ..

– Feel sort of like catch blocks in Java programs

– sigaction()

• When the event occurs, OS causes process to jump to event
handler routine

• This is very similar to the exception mechanism used by the OS
– For the OS, the hardware is the agent that causes the asynchronous jump

to the OS’s event handler

– For the application, the OS is the agent

• Policy/mechanism separation
– event detection by the OS

– lets the application do something in response other than the default
built into the OS

• Why is there a default?

IPC: signals
• The “exception mechanism” at this level is usually called “signal

handling”

• A “signal is delivered to the application” when an event occurs

• Events (signals) can be generated by code, including code in
other processes

• So, signals are an elementary form of IPC
– signal can be generated by another process

• send signal using kill (man 2 kill)

– only argument of the communication is a single int, the signal
number

Signals
 Signal Value Action Comment
 --
 SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 Term Interrupt from keyboard
 SIGQUIT 3 Core Quit from keyboard
 SIGILL 4 Core Illegal Instruction
 SIGABRT 6 Core Abort signal from abort(3)
 SIGFPE 8 Core Floating point exception
 SIGKILL 9 Term Kill signal
 SIGSEGV 11 Core Invalid memory reference
 SIGPIPE 13 Term Broken pipe: write to pipe with no readers
 SIGALRM 14 Term Timer signal from alarm(2)
 SIGTERM 15 Term Termination signal
 SIGUSR1 30,10,16 Term User-defined signal 1
 SIGUSR2 31,12,17 Term User-defined signal 2
 SIGCHLD 20,17,18 Ign Child stopped or terminated
 SIGCONT 19,18,25 Continue if stopped
 SIGSTOP 17,19,23 Stop Stop process
 SIGTSTP 18,20,24 Stop Stop typed at tty
 SIGTTIN 21,21,26 Stop tty input for background process
 SIGTTOU 22,22,27 Stop tty output for background process

Example use
• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
– Controls things like what the root directory of the web files

is, what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while
Apache is running
– If you restart the currently running Apache, you drop some

unknown number of user connections

• Solution: send the running Apache process a signal
– It has registered an signal handler that gracefully re-reads

the configuration file

Another Use
• How should ctrl-C be implemented?
• Option 1:

• OS notices ctrl-C was typed
• OS determines what process has keyboard focus
• OS immediately terminates that process

• What can go wrong?

• Option 2:
• OS notices ctrl-C was typed
• OS determines what process has keyboard focus
• OS sends it a SIGINT signal
• Default behavior is termination, but…
• An application that needs/wants to can register a handler and do whatever it

needs to do (to terminate gracefully)

