
Section 7 Lab fs

Reminder

● No class on Nov 19th and Nov 24th
● Lab fs due Tuesday Nov 23rd

● Appear as files to the user, but do not have corresponding data blocks.
● In this lab, the special devices are also called pseudo devices, in that its

read/write is handled not by any physical device but by the kernel.
● What’s the use case?

○ /dev/null and /dev/zero are typically passed to programs in place of normal files
○ /dev/null: when we want to discard the output of the program
○ /dev/zero: when we want to create files (or memory) initialized with zeros
○ /dev/random and /dev/uptime are self-explanatory
○ But check out linux /dev/urandom (man /dev/urandom) if you’re interested: it is a

special device, but it gathers environmental noise from physical devices

Special devices

Creating Special Devices

Recall major and minor device numbers:

● Major number identifies the device driver that handles read/write
● Minor number identifies the exact device

To create a new driver:

● Add new major number to file.h
● On kernel init, modify devsw to map the new major number to the corresponding

read/write functions (e.g. see consoleinit()).
● Either: 1) create a major number and a read/write function for each special device, or 2)

use one single major number and different minor numbers for each special device, and
have the single special read/write function examine the provided minor number.

Random number generator

● You may want to use a xorshift generator
● It is a pseudorandom number generator
● Don’t change the parameters. If you change them, the generator may not be able to

achieve a long period)

uint64_t xorshift64(struct xorshift64_state *state)
{

uint64_t x = state->a;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
return state->a = x;

}

Some other choices

● Fortuna random number generator (more secure)
● LFSR (Linear Feedback Shift Register)

○ Best parameter for LFSR

https://www.schneier.com/academic/fortuna/
https://en.wikipedia.org/wiki/Linear-feedback_shift_register#:~:text=In%20computing%2C%20a%20linear%2Dfeedback,function%20of%20its%20previous%20state.&text=Applications%20of%20LFSRs%20include%20generating,digital%20counters%2C%20and%20whitening%20sequences.
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf#page=5

Symbolic links

● A symbolic link is a term for any file that contains a reference to another
file

Symbolic links example

Path: "linkpath"

Type:T_SYMLINK

Data: "target"

inode

Path: "target"

Type: T_FILE

Data: "Some data"

inode

Symbolic links recursive example

Path: "linkpath0"

Type:T_SYMLINK

Data: "linkpath1"

inode

Path: "linkpath1"

Type: T_SYMLINK

Data: "target"

inode

Path: "target"

Type: T_FILE

Data: "Some data"

inode

Symbolic links

● Implement the symlink(target, linkpath)
● Make sure sys_open support T_SYMLINK
● When you are updating the file system, use begin_op before any update

and end_op after update for crash safety (check out e.g. sys_open,
sys_mknod for examples). Make sure to add end_op before every return.

● Be careful of locks, remember to unlock the inode before return

