
Lab alarm



RISC-V Assembly

● For this lab, good to understand the basics (go through the questions!)
● Has important differences with x86

○ Load (l*) and store (s*) instructions -- load from memory to register and store to 
memory from register

○ What is the instruction for jump?
○ Pay attention to what the operands are

● Register naming and conventions are different
● Consult textbook or cheat sheet: 

https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVG
reenCardv8-20151013.pdf

https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVGreenCardv8-20151013.pdf
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVGreenCardv8-20151013.pdf


The Stack (Review)

● Grows downwards. So to expand it, need to subtract stack pointer (sp)
● Frame pointer (s0/fp) points to the base of the stack
● Return address saved right below fp
● Last fp saved right below return address
● Local variables live below the last fp

Answer the four questions in the lab description before attempting the lab -- it 
helps to review the calling conventions and to familiarize with RISC-V



Alarm

● Some programs want to run stuff periodically
● We (the OS) provide the mechanism to do so without blocking
● Interface:

○ Process P registers a callback/handler function to be called every X ticks using syscall 
SIGALARM

○ Every X ticks, the OS interrupts the execution of P, saves the context, and jumps to the 
callback

○ At the end of the callback, the process calls syscall SIGRETURN
○ The OS restores the original execution context of P, jumps back to where P was 

interrupted, and resumes execution



Consider:

● How does the user unregister a handler?
● How do we make the process execute the handler (and return to the 

original point later)? (hint: modify a register in the process’ trap frame)
● It is necessary to have a SIGRETURN syscall? Can we have the user directly 

return from the handler? How? (this is one of the challenges)



Implementation

● The tests are divided into two parts
● First part makes sure the handler is called at all (test0)
● Second part makes sure that:

○ The handler is called multiple times (test1)
○ The interrupted code is resumed correctly (test1)
○ No reentrant handler calls; i.e. if handler hasn’t returned, don’t call it again (test2)

● We recommend that you work in stages, in the above order



Questions?


