Lab alarm

RISC-V Assembly

e For this lab, good to understand the basics (go through the questions!)

Has important differences with x86
o Load (I*) and store (s*) instructions - load from memory to register and store to
memory from register
o What is the instruction for jump?
o Pay attention to what the operands are

Register naming and conventions are different

Consult textbook or cheat sheet:
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVG
reenCardv8-20151013.pdf

https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVGreenCardv8-20151013.pdf
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVGreenCardv8-20151013.pdf

The Stack (Review)

Grows downwards. So to expand it, need to subtract stack pointer (sp)
Frame pointer (s0/fp) points to the base of the stack

Return address saved right below fp

Last fp saved right below return address

Local variables live below the last fp

Answer the four questions in the lab description before attempting the lab - it
helps to review the calling conventions and to familiarize with RISC-V

Alarm

e Some programs want to run stuff periodically
e We (the 0S) provide the mechanism to do so without blocking
e Interface:

(@)

Process P registers a callback/handler function to be called every X ticks using syscall
SIGALARM

Every X ticks, the OS interrupts the execution of P, saves the context, and jumps to the
callback

At the end of the callback, the process calls syscall SIGRETURN

The OS restores the original execution context of P, jumps back to where P was
interrupted, and resumes execution

Consider:

e How does the user unregister a handler?

e How do we make the process execute the handler (and return to the
original point later)? (hint: modify a register in the process’ trap frame)

e |tis necessary to have a SIGRETURN syscall? Can we have the user directly
return from the handler? How? (this is one of the challenges)

Implementation

e The tests are divided into two parts
e First part makes sure the handler is called at all (test0)
e Second part makes sure that:

o The handler is called multiple times (test1)

o The interrupted code is resumed correctly (test1)
o No reentrant handler calls; i.e. if handler hasn’t returned, don't call it again (test2)

e We recommend that you work in stages, in the above order

Questions?

