
Lab COW
CSE451 Section 4

fork() right now

Currently, fork() walks through the entirety of user
memory and copies every single page to the child
process pagetable.

- Why is this bad?
- (Think of typical usecases for fork())

- How can we improve this?
(Not actually fork, but what is called when you call
fork())

Copy-On-Write (COW) Fork

- Similar idea to lazy heap allocation

- In fork, don’t copy immediately; map to same physical page & mark as readonly
- How to distinguish between normal, readonly pages and COW pages?
- Should every page be copy on write?

- When you page fault, copy the page then, and allow faulting process to write to new page

Before old fork:

(Diagrams graciously borrowed
from CSE451 18au)

After old fork:

(Diagrams graciously borrowed
from CSE451 18au)

Before COW-fork:

(Diagrams graciously borrowed
from CSE451 18au)

4

5

After COW-fork:

(Diagrams graciously borrowed
from CSE451 18au)

4

5

After Process A tries to write to VPage A/PPage 4 (with COW-fork):

(Diagrams graciously borrowed
from CSE451 18au)

How do we keep track of all of this?

- Need some way of knowing whether or not a PTE is copy on write (why?)
- Can use RSW bits to store this
- Feel free to add your own macro for accessing this bit

How do we keep track of all of this?

- Need to know reference count of given physical page
- So if a process calls kfree, page isn’t freed if other processes are using it
- Also know when to convert page from COW to non-COW

- Lab writeup suggests the following:
- It’s OK to to keep these counts in a fixed-size array of integers. You’ll have to work out a scheme for how

to index the array and how to choose its size. For example, you could index the array with the page’s
physical address divided by 4096, and give the array a number of elements equal to highest physical
address of any page placed on the free list by kinit() in kalloc.c

Things to look out for

- Concurrency issues
- If you choose to have an array of reference counts, make sure you edit it atomically [there

is already a lock in kalloc.c]
- copyout()

- Like in lab lazy, the kernel will need to handle COW allocation here, as it will attempt to
write to user memory

- Be careful about what pages you make COW
- Some pages are meant to be readonly

Good luck!

Questions?

