
CSE 451
Lab 2: Alloc



How files are (currently) stored in xv6 [kernel/file.c]

‘
File 
struct 
0

File 
struct 
1

File 
struct 
2

File 
struct 
4

File 
struct 
3

File 
struct 
5

<- global static 
array

NFILE

Process file 
descriptor array



What’s wrong with this?

- Fixed, max number of files for entire system (NFILE)
- Resource usage fixed (memory does not scale with file usage)
- Kind of boring



Solution?

Dynamically allocate memory for files at runtime!



Brief memory overview

- Kernel hands us virtual memory pages (kalloc)
- Large chunks of contiguous memory (4KiB)

- Using this instead of a static file table is a start, but still has issues
- Way too much space for just one file struct (32 bytes)
- Can be smart about it, but difficult and tedious to do over and over

- Many kernel libraries that may want dynamically allocated memory



Slab allocator

In essence:

- Create allocator struct that will hand out smaller objects instead of entire 
pages

- Ask kernel for entire pages (4096 bytes) by kalloc()ing
- Break pages up into smaller objects
- Allocate “objects” when asked for them

- For the purpose of this lab, can all be same size + only need to be bigger than a file struct
- Keep track of allocated pages and objects and free them when necessary 



Slub allocator

- Current implementation of slab allocator in linux kernel
- Third link on lab page

- Gives a brief description of the high level implementation details
- Recommend that you follow this
- Take struct definitions with a grain of salt

- Overall design is pretty similar to what you might want to implement, but the nuances are up to 
you



Slub allocator

struct kmem_cache

partial_list 

This is not a comprehensive design! You may require other 
metadata in the allocator, slabs, objects, etc.

slab slab

object free list

slab metadata

object free list

slab metadata



Zooming in on a slab

slab metadata

free object

free object

free object

free object

free object

(In terms of the bare minimum for slab metadata, you’ll 
probably need a pointer to the object free list & a way of 
keeping track of how many objects are in use)

slab metadata

used object

free object

free object

used object

free object

When newly allocated After some 
allocation/deallocation



Slub allocator rules

- If a slab is filled (all objects are in use), remove it from the cache partial-list
- Should go back in the list if it has an opening
- How to recover entire slab when an object becomes free again?

- If a slab is empty (all objects are freed), entire slab should be freed
- Use kfree (a slab is just a page, for this lab)

Functions/macros/resources you may find useful when implementing:

- PGROUNDDOWN()/PGROUNDUP()/PGSIZE (riscv.h)
- List operations (list.c/list.h)



GDB Demo



Good luck!

Any questions?


