
Section 7: Lab 3 contd.
CSE 451 20wi

section 7: 2/20/2020

Announcements

● Lab 3 due tomorrow (no late days for lab4)

Copy-on-write Fork Tips

● How is a page different from a memory region?
○ A memory region is a contiguous region of memory, can contain multiple pages
○ A page is a 4096 byte virtual address range inside a memory region

● Anything else?

Virtual Memory System Visual Diagram

struct proc

struct
addrspace Memregion

[0x0- 0x2000)

Memregion
[0x2000-
0x4000)

Machine dependent
page table in memory

...

vpmap

Memregion
[... - ...)

last level
page table page table entry(PTE)

 PPN flags

* Permission in memregion
is the ground truth,
mapped permission might
differ if kernel does COWpt[0]

pt[1]

pt[2]

TLB Flush

● vpmap_flush_tlb
● when you map a virtual to a different physical page

○ flush to get rid of cached old translation

● when you change permission of a mapped page
○ flush to get rid of cached permission

● memregion_invalidate flushes TLB only if modified region belongs to
current process (tries to reduce unnecessary flush)

When should you flush TLB in Lab 3?

Copy-on-write Fork Tips

● when copying over parent's page table entry, make sure to only copy
mapped parent's pages

○ if (*parent_pte & PTE_P) { … }
○ if parent's page is not mapped to a physical page, there is nothing to share

● Do we need to lock around pmem_*?
○ No :) pmem is synchronized internally

● How is a physical page freed?
○ when pmem_dec_ref is decrementing the last reference, pmem_free is invoked
○ no need to explicitly free it, just make sure reference count is updated correctly

Copy-on-write Fork Tips

● What are present, user, write bit used for in page fault handler?
○ present indicates if the page exists
○ user indicates if the fault occured in user or kernel mode

■ doesn't really matter for stack/heap growth since kernel can trigger stack or heap
growth

○ write indicates if the memory access is a write

● Do I need to call handle_page_fault myself?
○ Nope. Page fault handler is a trap handler that is invoke on exception, you should never call

this yourself

Office Hour

