
Section 6: Intro to Lab 3
section 6: 2/13/2020
Please pick up section handout as you come in :)



Announcements

● Lab3 design doc due tomorrow

○ Thoughts on design docs?

● Lab 3 due next Friday

● Lab2 needs to work, submit your lab2 if you haven't done so



Page faults

● A trap number 14 means a page fault
● this means that the memory address accessed is

○ not mapped
○ or the access protection is violated (write to read-only page).



Data structures

● memregion
○ Keeps track of information for a continuous range of virtual addresses
○ Not a part of page table: just for bookkeeping inside the OS

● vpmap
○ Contains the actual page table



Stack On Demand
(dynamic stack growth)

User: sub $0x30, %rsp
Kernel: Stack Attack Alert! Stack Attack Alert!



Part 1: Grow user stack on-demand

● setup_stack() fixed the stack size but we want to support stack growth

● Step 1: update valid range for stack memregion (10 pages from 
USTACK_UPPERBOUND)

● Step 2: change the page fault handler to deal with valid page faults
○ as_find_memregion() to identify which memory region owns this page
○ pmem_alloc() to allocate a physical page
○ vpmap_map() to map the fault address with the allocated physical page
○ vm.h: helper functions to check permission bits



Part 1: Grow user stack on-demand

Questions for thought:
● Can the kernel cause a page fault that was meant for stack growth?
● Write some C user level code that causes a page fault for stack growth.



sbrk (set program break)

Hey Kernel, give me more heap space!



Part 2: Create a User-Level Heap

● User level programs call malloc and free to manage heap memory
○ Free list keeps track of free blocks in heap
○ malloc - Returns a free block of memory in the heap
○ free- Frees a block of memory in the heap
○ We have provided malloc and free for you in lib/malloc.c

■ Or you can copy your implementation from 351 (just kidding, please don’t)

● But what happens when there is no space left in the heap for malloc to 
return???



sbrk(n)

● Increment/decrement the heap by n bytes, resetting the program break
○ Program break determines the max space that can be allocated to the data segment, 

where the heap lies

● Returns ERR_NOMEM if there is not enough space
● Otherwise, returns the previous heap limit (i.e. the old top of the heap)



sbrk(n) Visual Diagram

Code

Stack

Code

Heap
(m-n bytes) 

Stack

Code

Heap
(m bytes)

Stack

(Empty Heap)
program 
break a

program 
break b

program 
break c

sbrk(m) = a sbrk(-n) = b

USTACK_UPPERBOUND

Process A virtual 
address space

Process A virtual 
address space

Process A virtual 
address space

(This is not 
required in this lab)



sbrk(n)

● Implement memregion_extend:
○ Extend the memory region, but don’t allocate pages for now. We use on-demand 

allocation, similar to stack

● Hint: each address space has a pointer to heap memregion 
● Once you implement memregion_extend, on demand allocation of heap 

pages is similar to on demand stack allocation
○ In fact, you can reuse your code

● page fault => validate if fault address is in a valid memregion => if so 
allocate, else terminates the process



sbrk(n)

● Section handout: heap 
● sbrk byte granularity allocation vs virtual memory page granularity mapping

○ Note that as_find_memregion will round the end address (see source code)



COW Fork 
(copy-on-write)

Stop! Wait a minute! I might not even write 
there!



Part 3: Copy-on-write Fork

● What is the most expensive operation in our lab 2 fork implementation? 

Discuss amongst yourselves.



Part 3: Copy-on-write Fork

In lab2’s fork, child gets a deep copy of parent's address space:

● Child and parent have different physical pages for the same code!
● If we implement exec(), we would throw away all copied pages created in 

fork()! 

How might we address these issues? What are some cases we’ll have to design 
for?



Lab 2 Fork Visual Diagram before fork()

Page D

Page A

Page B

Page C

Process A's Virtual Memory Physical Memory

Read/Write 
Virtual Page

Read Only 
Virtual Page

Allocated 
Physical Page

Physical
Page 1

PPage 3

PPage 2 

PPage 4

PPage 5

PPage 6

PPage 7

PPage 8



Page D

Page A

Page B

Page C

Page D

Page A

Page B

Page C

PPage 1

PPage 3
(Copy of 4)

Physical Process B's Virtual Memory

PPage 2 
(Copy of 1)

PPage 4

PPage 5
(Copy of 6)

PPage 6

PPage 7

PPage 8
(Copy of 7)

Lab 2 Fork Visual Diagram after fork()

Process A's Virtual Memory



COW Fork Visual Diagram before a copy-on-write fork()

Page D

Page A

Page B

Page C

Process A's Virtual Memory Physical Memory

Read/Write 
Virtual Page

Read Only 
Virtual Page

PPage 1

PPage 3

PPage 2 

PPage 4

PPage 5

PPage 6

PPage 7

PPage 8

Allocated 
Physical Page



Page D

Page A

Page B

Page C

Page D

Page A

Page B

Page C

PPage 1

PPage 3

Physical Process B's Virtual Memory

PPage 2 

PPage 4

PPage 5

PPage 6

PPage 7

PPage 8

COW Fork Visual Diagram after a copy-on-write fork()

Process A's Virtual Memory



Page D

Page A

Page B

Page C

Page D

Page A*

Page B

Page C

PPage 1

PPage 3

Physical Process B's Virtual Memory

PPage 2 

PPage 4

PPage 5
(copy of 6)

PPage 6

PPage 7

PPage 8

COW Fork Visual Diagram once Process A writes to Page A

Process A's Virtual Memory

* Note: If Process B is the last reference of ppage 6, you can make it writable when it tries to write to it (instead of making a copy of 6)



Food For Thought

● How to distinguish a copy-on-write page from a normal read-only page?
● What happens when parent and child try to concurrently write to the same 

page?
● Could the same physical page be mapped in more than two address 

spaces?
● How to resolve the case when the last process writes to a COW page?
● When should we use vpmap_flush_tlb() to flush TLB cache?


