
 
CSE 451: Section 6 Handout 
2/13/2020 
 
Page Faults, Stack, and Heap 
Page Faults: 
A trap 14 defines a page fault, this means that the memory address accessed is not mapped or 
the access protection is violated (write to read-only page). 
 
 
 
 
 
Stack: 
Can the kernel cause a page fault that was meant for stack growth? 
 
 
 
Write some C user level code that causes a page fault for stack growth. 
You may assume: 

- page size is 4096 Bytes  
- the user stack starts with 1 page mapped 

 
 
 
 
 
 
 
 
Heap: 
Look at the code below. It runs as expected and prints out 1 2 3 (each on a new line).  
Why doesn’t the bolded line cause the program to crash, even though we only allocated one 
byte with sbrk? (Note how the bolded line writes past that boundary). 
 

#include <stdio.h> 

#include <unistd.h> 

 

int main(int argc, char** argv) { 

  char *ptr; 

  ptr = (char *)sbrk(1); 

  *(ptr + 1) = 1; 

  ​*(ptr + 2) = 2; 
  *(ptr + 3) = 3; 

  printf("%d\n", *(ptr + 1)); 

  printf("%d\n", *(ptr + 2)); 

  printf("%d\n", *(ptr + 3)); 

  return 0; 

} 

 

 


