Section 4: Lab 2 (contd.)

Section 4: 1/30/2020
Please pick up section handout as you come in :)

Administrative

e Lab 2 design doc part 2 due tomorrow (1/31)

e Lab 2 due next Friday

e Feedbacks are pushed to your repo as a separate branch, lives in the
feedback folder

A little note:

e Both spawn and fork create children!
o If process A spawns process B and forks process C, A is the parent of both B and C

Pipes

What is a pipe

e A special “file” that is stored in memory
e Used for inter-process communication (IPC)

With the sys_pipe, a process sets up a writing and reading end to a

“holding area” (buffer) where data can be passed from process to process

o From user's perspective: Two new files will be allocated, one will be the “read end” (not
writable), and one will be the “write end” (not readable).

Pipe is blocking: when data is not available, reader blocks until new data is
written, when buffer is full, writer blocks until reader reads data out of the
buffer

o Implementation: conditional variable

Pipe

File Struct File Struct
(Read only) (Write only)

P

0 1 2 3 PROC_MAX_FILE

A;

0 1 2 3 PROC_MAX_FILE

Process 1's File Descriptor Array Process 2's File Descriptor Array

struct proc
struct proc

Pipe allocation

e Pipes should be allocated at runtime, when sys_pipe is called
e A pipeis associated with two files: read_end and write_end
e file structure can be allocated through fs_alloc_file,

Changing the behavior for reading/writing

e Function pointers: a pointer that points to codes

e Example: stdin_read, stdout_write

e Set file operation handlers to point to pipe operations, bypassing the inode
layer (the disk)

static struct file operations pipe file operations = {
.read = pipe read,
.write = pipe write,
.close = pipe close

2

file->f ops = &pipe file operations;

e Need a pipe struct to track information
o A way to avoid race conditions - there can be many readers and writers
o A way to notify the other end when the state changes
m mechanism for reader to block and wakeup
m mechanism for writer to block and wakeup
o A buffer to store data
m dataitself
m number of bytes written
o need to know if read end or write end is closed
m affects the other end
m tell us when the pipe can be freed

Pipe Scenarios (exercise)

Section handout, page 1:

If a pipe no longer has a reader, a write call should return ERR_END.
If a pipe no longer has a writer and the buffer is empty, a read should return a 0.

e What should read return if the pipe no longer has a writer, but the buffer
has data?

e What should happen if write end closes while the reader is sleeping?

o does the reader sleep forever?
o if not, what should it return when it wakes up?

e When can you clean up a pipe (buffer, allocated struct)?

Spawn with Args

Set up stack (spawn with args)

e So that we can start a process with arguments
e The arguments are stored at the bottom of the stack, before the
stackframe of main function
o because stack grows downwards, the bottom of the stack has higher address
e User perspective: int main (int argc, char **argv)
o First argument will always be arge (number of arguments)
o Second argument will always be argv, an array of strings (first string is always
the name of the program)

x86-64 Calling Conventions

o %rdi
o Holds the first argument
o %rsi
o Holds the second argument
e %rsp
o Points to the top of the stack/lowest address (stack grows down)
e If arguments are arrays, store them on the stack and store a pointer

to the array in the register

A little note

The provides code sets up a pointer to the stack in kernel address space
However, addresses pushed onto the stack must be the address in user’'s address
space

e USTACK_ADDR() helps transform a kernel virtual address to user address

o It only works for first page of stack, which is fine. we will only set up one page
of stack on start up

Stack Layout

order doesn't matter
here as long as pointer
points to the right

location ~<.
just Os
Registers
$RDI argc
%RSI argv
%RSP *

High
addresses

value doesn't matter

Low
addresses

argv is an array of pointers,
therefore %RSI points to an
array on the stack

Since each element of the argv
array is a char *, each element
points to a string stored
elsewhere on the stack.

You can think of all variables
stored above the return PC on
the stack as local variables of
the caller.

word alignment: push 0 to
stack until current stackptr is
word aligned (multiple of 8s)

osv specific stack convention

e To accommodate different calling convention for various architectures, osv
always pushes argy, argc, and return address on the stack in stack_setup
e Machine dependent tf_proc() will actually set up the proper registers

—

by

tf->cs (SEG_UCODE << 3) | DPL_USER;
tf->ss = (SEG_UDATA << 3) | DPL_USER;
tf->rflags = FL_IF;

tf->rsp = stack_ptr;

tf->rip = entry_point;

// also need to set up arguments for new process sp is stackptr in kernel
tf->rdi = splll; virtual address
tf->rsi = sp[2];

OSV version

High
addresses

Registers
$RDI argc
%RSI argv
%RSP * >

Low
addresses

| et's Practicel!

(Get out some paper and pens!)

Practice Exercise 1 - spawn(“cat cat.txt”)

argc
argv

stackptr

Stack
grows
down

High
addresses

Low
addresses

TODO:

Draw out the stack layout for
process spawned with “cat
cat.txt”.

Practice Exercise 1 - spawn(“cat cat.txt”) Solution

STACK_UPPERBOUND
OXFFFFFF7FFFFFF000

OXFFFFFF7FFFFFEFF8

OXFFFFFF7FFFFFEFF4 ,

OXFFFFFF7FFFFFEFFO argc: 2

OXFFFFFF7FFFFFEFES argv: OxFFFFFF/FFFFFEFDS8
OxFFFFFF7FFFFFEFEQ stackptr. OxFFFFFF7FFFFFECO
OXFFFFFF7FFFFFEFDS

OXFFFFFF7FFFFFEFDO
OXFFFFFF7FFFFFEFCS
OXFFFFFF7FFFFFEFCO

Practice Exercise 2 - spawn("echo hello world”)

argc
argv

stackptr

Stack
grows
down

High
addresses

Low
addresses

TODO:

Draw out the stack layout for

process spawned with “echo
hello world”.

Practice Exercise 2 - spawn("echo hello world”)

High
addresses

stackptr—

Low
addresses

