
Section 4: Lab 2 (contd.)
Section 4: 1/30/2020
Please pick up section handout as you come in :)

Administrative

● Lab 2 design doc part 2 due tomorrow (1/31)
● Lab 2 due next Friday
● Feedbacks are pushed to your repo as a separate branch, lives in the

feedback folder

A little note:
● Both spawn and fork create children!

○ If process A spawns process B and forks process C, A is the parent of both B and C

Pipes

What is a pipe

● A special “file” that is stored in memory
● Used for inter-process communication (IPC)

pipe(fds)

● With the sys_pipe, a process sets up a writing and reading end to a
“holding area” (buffer) where data can be passed from process to process

○ From user’s perspective: Two new files will be allocated, one will be the “read end” (not
writable), and one will be the “write end” (not readable).

● Pipe is blocking: when data is not available, reader blocks until new data is
written, when buffer is full, writer blocks until reader reads data out of the
buffer

○ Implementation: conditional variable

Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

File Struct
(Read only)

File Struct
(Write only)

Pipe

● Pipes should be allocated at runtime, when sys_pipe is called
● A pipe is associated with two files: read_end and write_end
● file structure can be allocated through fs_alloc_file,

Pipe allocation

● Function pointers: a pointer that points to codes
● Example: stdin_read, stdout_write
● Set file operation handlers to point to pipe operations, bypassing the inode

layer (the disk)

Changing the behavior for reading/writing

static struct file_operations pipe_file_operations = {
 .read = pipe_read,
 .write = pipe_write,
 .close = pipe_close
};

file->f_ops = &pipe_file_operations;

pipe(fds)

● Need a pipe struct to track information
○ A way to avoid race conditions - there can be many readers and writers
○ A way to notify the other end when the state changes

■ mechanism for reader to block and wakeup
■ mechanism for writer to block and wakeup

○ A buffer to store data
■ data itself
■ number of bytes written

○ need to know if read end or write end is closed
■ affects the other end
■ tell us when the pipe can be freed

Pipe Scenarios (exercise)

Section handout, page 1:

If a pipe no longer has a reader, a write call should return ERR_END.
If a pipe no longer has a writer and the buffer is empty, a read should return a 0.

● What should read return if the pipe no longer has a writer, but the buffer
has data?

● What should happen if write end closes while the reader is sleeping?
○ does the reader sleep forever?
○ if not, what should it return when it wakes up?

● When can you clean up a pipe (buffer, allocated struct)?

Spawn with Args

Set up stack (spawn with args)

● So that we can start a process with arguments
● The arguments are stored at the bottom of the stack, before the

stackframe of main function
○ because stack grows downwards, the bottom of the stack has higher address

● User perspective: int main (int argc, char **argv)
○ First argument will always be argc (number of arguments)
○ Second argument will always be argv, an array of strings (first string is always

the name of the program)

x86-64 Calling Conventions

● %rdi
○ Holds the first argument

● %rsi
○ Holds the second argument

● %rsp
○ Points to the top of the stack/lowest address (stack grows down)

● If arguments are arrays, store them on the stack and store a pointer
to the array in the register

● The provides code sets up a pointer to the stack in kernel address space
● However, addresses pushed onto the stack must be the address in user’s address

space
● USTACK_ADDR() helps transform a kernel virtual address to user address

○ It only works for first page of stack, which is fine. we will only set up one page
of stack on start up

A little note

Stack Layout

arg #(argc - 1)
string

argv%RSI

argc%RDI

*%RSP

Registers

Low
addresses

High
addresses ● argv is an array of pointers,

therefore %RSI points to an
array on the stack

● Since each element of the argv
array is a char *, each element
points to a string stored
elsewhere on the stack.

● You can think of all variables
stored above the return PC on
the stack as local variables of
the caller.

● word alignment: push 0 to
stack until current stackptr is
word aligned (multiple of 8s)

order doesn't matter
here as long as pointer
points to the right
location

NULL

arg #0 string
arg #1 string
arg #2 string

...

argv[argc - 1]
...

argv[2]
argv[1]
argv[0]
Return PC

Stack
grows
down

word alignment

arg #(argc - 1)
string

just 0s

value doesn't matter

osv specific stack convention

● To accommodate different calling convention for various architectures, osv
always pushes argv, argc, and return address on the stack in stack_setup

● Machine dependent tf_proc() will actually set up the proper registers

sp is stackptr in kernel
virtual address

osv version

argv%RSI

argc%RDI

*%RSP

Registers

Low
addresses

High
addresses

NULL

arg #0 string
arg #1 string
arg #2 string

...

arg #(argc - 1)
string

argv[argc - 1]
...

argv[2]
argv[1]
argv[0]

Return PC

argv
argc

NULL

arg #0 string
arg #1 string
arg #2 string

...

argv[argc - 1]
...

argv[2]
argv[1]
argv[0]
Return PC

Stack
grows
down

word alignment

arg #(argc - 1)
string

word alignment

Let’s Practice!
(Get out some paper and pens!)

Practice Exercise 1 - spawn(“cat cat.txt”)

?argv

?argc

?stackptr

Stack
grows
down

Low
addresses

High
addresses TODO:

Draw out the stack layout for
process spawned with “cat
cat.txt”.

Practice Exercise 1 - spawn(“cat cat.txt”) Solution

argc: 2
argv: 0xFFFFFF7FFFFFEFD8
stackptr: 0xFFFFFF7FFFFFEC0

Return PC

argv[0]
argv[1]
NULL

“cat\0”

“cat.txt\0”

argv
argc

STACK_UPPERBOUND
0xFFFFFF7FFFFFF000

0xFFFFFF7FFFFFEFF8

0xFFFFFF7FFFFFEFF4
word alignment0xFFFFFF7FFFFFEFF0

0xFFFFFF7FFFFFEFE8

0xFFFFFF7FFFFFEFD8

0xFFFFFF7FFFFFEFE0

0xFFFFFF7FFFFFEFD0
0xFFFFFF7FFFFFEFC8
0xFFFFFF7FFFFFEFC0

Practice Exercise 2 - spawn("echo hello world”)

Stack
grows
down

Low
addresses

High
addresses

TODO:

Draw out the stack layout for
process spawned with “echo
hello world”.

?argv

?argc

?stackptr

stackptr

Low
addresses

High
addresses

argv[1]
argv[2]
NULL

“echo\0”
“hello\0”

“world\0

argv[0]

Return PC

Practice Exercise 2 - spawn("echo hello world”)

argv
argc = 3

word alignment

