

CSE 451: Lab 1 Section Notes
1/9/2020

Lecture
Debugging:
gdb, printf, kassert statements, unit tests, system/integration tests

Interrupts, system calls, exceptions:
Note: an instruction cannot be interrupted/half executed. A line of C != a CPU instruction.

● see ​overview.md​ traps section for how they are handled in osv
● see ​osdev​ for more examples of exceptions

Process and threads:

● see ​overview.md​ Processes, threads and synchronization

What are the ways to go from user mode to kernel mode? Give an example of each.

How does a process go back to user mode?

Implementing File Descriptors
*Note​: See ​labs/overview.md ​to see an overview of the kernel (this will give you
information relevant to this lab and later labs). Also look at the design document, It is meant to
guide you through your implementation.

Motivation​: We want to allow users to utilize storage on the computer with provisioned access
and management. The OS provides ​structures​ (better abstractions than pure disk sectors) and
protection​ (so people can't delete all your work) for storage through a file system. File system
functionalities are exposed through system calls.

How should users refer to a file?
Suppose a coworker suggests using the file path to address a file in all syscalls, what are the
pros and cons of this decision?
What other options are there?
Modern day systems use file descriptor (a number) to refer to open files. Why file descriptors?

Overview: ​These are the main components you’ll be developing and working with for the file
portion of Lab 1. (More details see ​labs/lab1design.md ​)

include/kernel/fs.h ​ -- File system interface you will be using

include/kernel/proc.h ​ -- You will need to extend proc to hold open files.

https://gitlab.cs.washington.edu/osv-public/20wi/blob/master/labs/overview.md
https://wiki.osdev.org/Exceptions
https://gitlab.cs.washington.edu/osv-public/20wi/blob/master/labs/overview.md

kernel/syscall.c ​ -- We don’t trust the arguments that users give to us, so we check input
before doing any logic on the file system. All arguments fetched are typed ​sysarg_t​ and every
function returns a ​sysret_t ​as result. These types are used to encapsulate variations in
argument size for different architectures. When you pass these arguments to kernel internal
functions, you need to cast the arguments to their appropriate types. Remember to return
proper error codes(lab1.md) for system calls.

Design document: ​This is a design document (you can view it on gitlab to see formatted ​md ​)
we’ve written to give you an idea of the layouts you should be using. This will be a huge help in
guiding how you implement your solution (we ​highly​ suggest you read it thoroughly and follow it)

File system layer - ​This is what you will be interacting with! Read the design document and be
clear about the file system API’s functionality and data structures before you begin coding.

Syscall layer - ​Set of kernel functions exposed to ​user space​. These functions must ensure
valid input from the user, protecting the kernel from errors and mischief. Understand the syscall
mechanism. How do syscalls get arguments from the user? What is the difference between a
syscall and a hardware-based interrupt?

Recommended Reading: ​OSPP (Chp 2)
Extra Reading:​ OSDevWiki, Intel Developer Manuals.

Throwbacks to C:

int *x = set_x();

printf(“%d\n”, *x);

int *set_x(void) {

int x = 4;

return &x;

}

 char *buf;

 set_buf(&buf);

 printf(“%s\n”, buf);

 void set_buf(char **buf) {

 *buf = malloc(sizeof(char) * 6);

 buf[0] = ‘h’;

 buf[1] = ‘e’;

 buf[2] = ‘l’;

 buf[3] = ‘l’;

 buf[4] = ‘o’;

 buf[5] = ‘\0’;

 }

Are the C programs above correct? If not, how would you correct them?

struct Point {

int x;

int y;

};

struct Point p;

p.x = 1;

p.y = 2;

change_point(p);

print(p.x);

print(p.y);

void change_point(struct Point p) {

p.x = 10;

p.y = 20;

}

What is printed out above? What needs to be changed to get the desired output?

More C examples:

 limited stack space
multiple return values large items should be on heap

int x,y;

err_t err;

err = fill_xy(&x, &y);

if (err == ERR_OK) {

 printf(“%d, %d\n”, *x, *y);

}

err_t fill_xy(int *x, int *y) {

if (x && y) {

 *x = 1;

 *y = 2;

 return ERR_OK;

 }

return ERR_NOMEM;

}

 void parse_string(char* str) {

 char buf1[1024]; // :(

 char *buf2 = malloc(1024); // :)

 strncpy(buf1, str, 1024);

 if (buf2) {

 strncpy(buf2, str, 1024);

 }

 }

GDB Cheat Sheet

See the ​GDB manual​ for a full guide to GDB commands. Here are an assortment of GDB
commands your TAs and former 451 students have found to be useful:

add-symbol-file​ filepath(ex. build/user/sh)
load symbol table from an executable
Ctrl-c
Halt the machine and break in to GDB at the current instruction. If QEMU has multiple virtual
CPUs, this halts all of them.
c​ (or ​continue​)
Continue execution until the next breakpoint or Ctrl-c.
n​ (or ​next​)
Execute one line of code.
si​ (or ​stepi​)
Execute one machine instruction.
b function​ or ​b file:line​ (or ​breakpoint​)
Set a breakpoint at the given function or line.
b *​addr​ (or ​breakpoint​)
Set a breakpoint at the EIP ​addr​.
set print pretty
Enable pretty-printing of arrays and structs.
info registers (i r)
Print the general purpose registers, eip, eflags, and the segment selectors. For a much more
thorough dump of the machine register state, see QEMU's own info registers command.
x/​N​x ​addr
Display a hex dump of ​N​ words starting at virtual address ​addr​. If ​N​ is omitted, it defaults to 1.
addr​ can be any expression.
x/​N​i ​addr
Display the ​N​ assembly instructions starting at ​addr​. Using $eip as ​addr​ will display the
instructions at the current instruction pointer.
tui enable
Splits your screen with the view of code. Very helpful for seeing where you are in the code while
you step.

(Source: MIT 6.828/2012)
Another useful GDB Cheat Sheet: ​http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

exiting qemu: ​ctrl-a x

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

