
CSE 451 Section 2
OSV Lab 1 Design
20wi

Please pick up section handout as you come in :)



File Information

● struct inode: information for the file on disk (e.g. type, location)
● struct file: current state of the open file (e.g. mode, offset)



Additional Information

● Inode struct to file on disk: 1 to 1
○ Kernel uses a radix tree to keep track of inodes opened
○ On fs_open_file(), it checks the radix tree to fetch the inode and stores 

a pointer to it in the file struct
● File struct to file on disk: many to 1

○ Read from different offsets at the same time



Reference counting review

● Can we free the file structure when we close the file?



Reference counting review

● Can we free the file structure when we close the file?
○ It depends: other file descriptors might be still using it!
○ We need to keep track of how many references points to the file



Reference counting review

● fs_open: set reference count to 1
● fs_reopen_file: increase reference count
● Fs_close_file: decrease reference count and free the memory only if 

there’s no reference to it



Why we use file descriptors instead of file 
path? Why do we want processes to have 
their own sets of file descriptors?

Section handout: question 1



Process 1’s File Descriptor Array

0 1 2 3 PROC_MAX_FILE

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3
st

ru
ct

 p
ro

c
PROC_MAX_FILE

File 
Struct

File 
Struct

File 
Struct

Inode Inode



Draw out the memory layout after the 
following c code:

int fd1 = open(“file.txt”, O_RDONLY);
int fd2 = open(“file.txt”, O_RDWR);

Section handout: question 2 



Process 2’s File Descriptor Array

0 1 2 3

st
ru

ct
 p

ro
c

PROC_MAX_FILE

File 
Struct

A

File 
Struct

B

Inode
file.txt



System Calls

● sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat
● Main goals of sys functions

○ Argument parsing and validation (never trust the user!)
○ Verify permission
○ Call associated file functions to handle the request



Argument Parsing & Validation

Currently process to thread is 1:1, don't need to copy syscall arguments
● bool fetch_arg(void *arg, int n, sysarg_t *ret) get nth argument
● bool validate_str(char *s): validate string
● bool validate_bufptr(void* buf, size_t size): validate buffer

It’s a good practice to implement and use helper functions:
● int alloc_fd(): allocate a file descriptor
● bool validate_fd(int fd): validate if a fd is valid



sys_open

Open file and find an open spot in the file descriptor table 

0 1 2 3

st
ru

ct
 p

ro
c

0 1 2 3

st
ru

ct
 p

ro
c

File 
Struct



sys_close

Clear a spot in the file descriptor table 

0 1 2 3

st
ru

ct
 p

ro
c

0 1 2 3

st
ru

ct
 p

ro
c

File 
Struct



sys_read and sys_write

● Writing or reading of a "file", based on whether the file is an inode or a pipe.
○ Note that file is in quotes. A file descriptor can represent many 

different things. You could be reading from a file, or you could be 
reading from console or a pipe!

● Don’t need to worry about the pipe part for this lab, just the inode files.
○ We will learn pipes in lab 2



sys_stat

● Return useful statistics information from inode
● Can't stat on files that are not on disk

○ if file doesn't have an inode, it is not a real file and we don’t have 
statistics for it

○ Example: pipes in lab 2



sys_dup

Duplicates the file descriptor in the process’ file descriptor table

File
Struct

0 1 2 3

st
ru

ct
 p

ro
c

0 1 2 3st
ru

ct
 p

ro
c

File
Struct



Exercise: dup2

Section handout: question 3



Console Input/Output

● Console input and output are declared as special files
○ Look at kernel/console.c to see how it's done

● How are they related to stdin/stdout?
○ Automatically initialized in proc_init as file descriptor 0 and 1
○ When the child process is forked from parent, the file descriptors are 

copied



Where is X?

From the top level of the repo, run:

grep -R “X” .
For better results, ctags is a useful tool on attu (man ctags) with support built 
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a 
function/type/macro/variable is defined when using ctags.

For vscode: press Ctrl+T to search for declaration/definition

https://andrew.stwrt.ca/posts/vim-ctags/
https://www.emacswiki.org/emacs/EmacsTags%23tags


Multiprocessing :)

● Take a look at proc_spawn in proc.c, what does it do? 
● If a process is forked, what steps in proc_spawn should remain the same, 

and what should change?



Where will a process resume execution after 
coming back to user mode? Where is this 
information stored?



How to set return value on syscall returns?

To differentiate the new processes from the old process, we call the new 
process a child of the parent old process. The return value of fork is different 
between the child and the parent. The parent will return the child process id 
and the child will return 0.

How can we alter the return value of the fork function to simulate the situation 
above?



Lab2 additional info:
List in osv

● List declaration and initialization



List in osv

● Before you can add an element to a list, you first have to allocate a node 
inside the element.



List in osv

● Adding to the list



List in osv

● Retrieving from the list

Provide address of the node added, type of struct, and the name of the node to 
retrieve the element



List in osv

● Iterate through the list


