Address Translation

Main Points

e Address Translation Concept

— How do we convert a virtual address to a physical
address?

* Flexible Address Translation
— Base and bound
— Segmentation
— Paging
— Multilevel translation
e Efficient Address Translation
— Translation Lookaside Buffers
— Virtually and physically addressed caches

Address Translation Concept

Wirtuy
Adtreass A
M
Pracessor *| Trarciation | Irvalnd »
Exceplnn
Vaud
Flipsical
’
Data Physical Memary
ADdress

Dats

Address Translation Goals

Memory protection

Memory sharing

— Shared libraries, interprocess communication
Sparse addresses

— Multiple regions of dynamic allocation (heaps/stacks)
Efficiency

— Memory placement

— Runtime lookup
— Compact translation tables

Portability

Bonus Feature

 What can you do if you can (selectively) gain
control whenever a program reads or writes a
particular virtual memory location?

* Examples:
— Copy on write
— Zero on reference
— Fill on demand
— Demand paging
— Memory mapped files

A Preview: X86 Address Translation

* Translation lookaside buffer (TLB)
— Cache of virtual page -> physical page translations
— If TLB hit, physical address

— |f TLB miss

* Hardware TLB: walk the page table

» Software TLB: trap to kernel; fills TLB with translation and resumes
execution

e Software TLB kernel can implement any page
translation
— Page tables
— Multi-level page tables
— Inverted page tables

Virtually Addressed Base and Bounds

Processor's View Implementation Physical
Memory
Ve Base &
Vil mery Vel Pryscal "
Aeddrecss Aedreess * Address
e ® —
e
i found
*
Rase
. ’
® Exception

Question

e With virtually addressed base and bounds,
what is saved/restored on a process context
switch?

Virtually Addressed Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)
— Safe

— Can relocate in physical memory without changing
process

e Cons?

— Can’t keep program from accidentally overwriting its
owh code

— Can’t share code/data with other processes
— Can’t grow stack/heap as needed

Segmentation

Segment is a contiguous region of virtual memory

Each process has a segment table (in hardware)
— Entry in table = segment

Segment can be located anywhere in physical
memory

— Each segment has: start, length, access permission

Processes can share segments
— Same start, length, same/different access permissions

Segmentation

Processor's View Implementation Physical
Memory
Virtual — Bade 3
Memory
Processor Baies
Virtual Bound 3
Address ' Virtual Segment Table
Processor| - Address Base Bournd Access
voh oo Segment] Offset Read
'...........f o 3 : R'w —
H : R/W Sound 0
Base]
S o). P M dress | Bases
: Sound 1
| ‘é _____ , Raise
Exception

Sound 2

Segment start

length

2 bit segment # code 0x4000 0x700
12 bit offset data 0 0x500

heap - -
main: 240 store #1108, r2 x: 108 abc\0
244 store pc+8§, r31
248 jump 360 main: 4240 store #1108, r2
24c 4244 store pc+S§, r31

4248 jump 360

strlen: 360 loadbyte (r2), r3 424c
420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1108 abc\0 4420 jump (r31)

Question

* With segmentation, what is saved/restored on
a process context switch?

UNIX fork and Copy on Write

 UNIX fork
— Makes a complete copy of a process

* Segments allow a more efficient implementation
— Copy segment table into child
— Mark parent and child segments read-only
— Start child process; return to parent

— If child or parent writes to a segment (ex: stack,
heap)
e trap into kernel
* make a copy of the segment and resume

Processor's View Implementation

Process Vs Wew
Vil
Nemory
pwesme >
Processor - - Processor
Vil
Address . Segreent Tabh
Virua - Do
Azdress : Heap
. -
Process 25 Veuw
...... ==
; Code ;
— : Processor e .@.
Virtal : '
Address : : Segment Tablke
0500 Data Seq. Offset 0?0 Bourd Access
ol 9 00 Code i Raad
Data AW
Heap Wng
Atdress Heap AW
Stack w
Stack

/ero-on-Reference

 How much physical memory is needed for the
stack or heap?
— Only what is currently in use

 When program uses memory beyond end of stack
— Segmentation fault into OS kernel

— Kernel allocates some memory
* How much?

— Zeros the memory
* avoid accidentally leaking information!

— Modify segment table
— Resume process

Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten
— Can transparently grow stack/heap as needed
— Can detect if need to copy-on-write
* Cons?
— Complex memory management
* Need to find chunk of a particular size

— May need to rearrange memory from time to time to
make room for new segment or growing segment
* External fragmentation: wasted space between chunks

Paged Translation

 Manage physical memory in fixed size units, or
pages

* Finding a free page is easy
— Bitmap allocation: 0011111100000001100
— Each bit represents one physical page frame

* Each process has its own page table
— Stored in physical memory

— Hardware registers
* pointer to page table start
* page table length

Paged Translation (Abstract)

Processor's View Physical
Memory
Frame D
~a|Coded
: A Datad
Y¥age D codel” ' ' f-.lvapl
c'apl.‘qc | . . " SRy p— > LO:’G"
, ' "Heapd
Data 3] Datal
[T] R ————
\Heapd
Stack :
VPage N[: HSeackl
*[Stachl
Frama M

Paged Translation (Implementation)

Physical
Memory
"l',v(u' ::f e ?
Aderass i
Processor y Dﬂ.ﬂ '
virtua Page Tadle e
Adgrass Frame Access

(_Faqes | Diset

Yiud

[t T =

S

Physical
H Address

Frame M

Process View

6o mMmmigoO

r X - —

Page

Tabte
i)

w

—

Physical Memory

r x - -

OO ®m>»> TGO MM

Paging Questions

* With paging, what is saved/restored on a
process context switch?

— Pointer to page table, size of page table
— Page table itself is in main memory
 What if page size is very small?
* What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Copy on Write

* Can we share memory between processes?
— Set entries in both page tables to point to same page frames

— Need core map of page frames to track which processes are
pointing to which page frames (e.g., reference count)

* UNIX fork with copy on write
— Copy page table of parent into child process
— Mark all pages (in new and old page tables) as read-only
— Trap into kernel on write (in child or parent)
— Copy page
— Mark both as writeable
— Resume execution

Demand Paging

e Can | start running a program before its code is in
physical memory?
— Set all page table entries to invalid
— When a page is referenced for first time, kernel trap
— Kernel brings page in from disk
— Resume execution

— Remaining pages can be transferred in the
background while program is running

Sparse Address Spaces

* Might want many separate dynamic
segments

— Per-processor heaps

— Per-thread stacks

— Memory-mapped files

— Dynamically linked libraries

 What if virtual address space is large?
— 32-bits, 4KB pages => 500K page table entries
— 64-bits => 4 quadrillion page table entries

Multi-level Translation

* Tree of translation tables
— Paged segmentation
— Multi-level page tables
— Multi-level paged segmentation

* Fixed-size page as lowest level unit of allocation
— Efficient memory allocation (compared to segments)
— Efficient for sparse addresses (compared to paging)
— Efficient disk transfers (fixed size units)
— Easier to build translation lookaside buffers
— Efficient reverse lookup (from physical -> virtual)
— Variable granularity for protection/sharing

Paged Segmentation

Process memory is segmented

Segment table entry:

— Pointer to page table

— Page table length (# of pages in segment)
— Access permissions

Page table entry:

— Page frame

— Access permissions

Share/protection at either page or segment-level

Paged Segmentation (Implementation)

Implementation Physical
Memory
Procassor
Vel
Asdress
o| Segment | Page LTS :
o) Exception
Sz-zm.oit Tatole '
Pape Table Skxe Azcess
-» Read :
R‘w - ‘,—
W
Paps Tabie AW
. Frame Aocess
Rrad Phepsical ...
v : Fead Adress
i el Frame L

Question

* With paged segmentation, what must be
saved/restored across a process context
switch?

Multilevel Paging

Implementation
Procassor
Vil
At rass
o ledea Nowe 2 | Intece S Ofset

Lewed |

Pryscal
Addrass ;

Frame Ofiset

Level 2

Lewel 3

Physical
Memory

Question

* Write pseudo-code for translating a virtual
address to a physical address for a system
using 3-level paging.

x86 Multilevel Paged Segmentation

* Global Descriptor Table (segment table)
— Segment virtual address
— Segment length
— Segment access permissions

— Context switch: change global descriptor table register
(GDTR, pointer to global descriptor table)

* Multilevel page table
— 4KB pages; each level of page table fits in one page
— 32-bit: two level page table (per segment)
— 64-bit: four level page table (per segment)
— Omit sub-tree if no valid addresses

Multilevel Translation

* Pros:
— Allocate/fill only page table entries that are in use
— Simple memory allocation
— Share at segment or page level

e Cons:

— Space overhead: one pointer per virtual page
— Two (or more) lookups per memory reference

Portability

 Many operating systems keep their own

memory translation data structures

— List of memory objects (segments)

— Virtual page -> physical page frame

— Physical page frame -> set of virtual pages
* One approach: Inverted page table

— Hash from virtual page -> physical page

— Space proportional to # of physical pages

Efficient Address Translation

* Translation lookaside buffer (TLB)

— Cache of recent virtual page -> physical page
translations

— If cache hit, use translation

— If cache miss, walk multi-level page table (or trap
to kernel)

e Cost of translation =
Cost of TLB lookup +

Prob(TLB miss) * cost of page table lookup

TLB and Page Table Translation

Vil Yl
At rass At rass
Ratse
Processar |- -» e Misy o] Pape Ievatd >
Exo8 plios
Table
: e
Vald
F';ﬂo Frarmm
01es))(;) . Phiysical
Noemar
Physical '
Address

Data

Data

TLB Lookup

Virtual
Address
Pages Oftset
Translation Loskasige Bulfer [TLE)
Virtual Fage
oty Q. | - | oree

Physical
Memory

MIPS Software Loaded TLB

* Software defined translation tables
— If translation is in TLB, ok
— If translation is not in TLB, trap to kernel
— Kernel computes translation and loads TLB
— Kernel can use whatever data structures it wants

* Pros/cons?

Question

* What is the cost of a TLB miss on a modern
processor?
— Cost of multi-level page table walk
— MIPS: plus cost of trap handler entry/exit

Hardware Design Principle

The bigger the memory, the slower the memory

Intel i7
j '"te.éfxatEd‘ Mgmdfyton‘.:trelleﬁf—ﬁ:(:h -DDR3L

|

_ Cofe0. Core Core 2 . Core3

Shared L3 Cache

Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100 ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1 XB

i7 has 8MB as shared 3™ level cache; 2" level cache is per-core

Question

 What is the cost of a first level TLB miss?
— Second level TLB lookup

e What is the cost of a second level TLB miss?
— x86: 2-4 |level page table walk

* How expensive is a 4-level page table walk on
a modern processor?

Virtually Addressed vs. Physically
Addressed Caches

* Too slow to first access TLB to find physical
address, then look up address in the cache

* Instead, first level cache is virtually addressed

* In parallel, access TLB to generate physical
address in case of a cache miss

Processar |-

Data

Virtually Addressed Caches

Vil
At rass

ity
Cache

ml

().;la

Vel
A ress

OMsel

TLB

M

v
Frame

Yiuy
Aderass

Page
Tablke

Vald

.
Frame

Physcal
Address

TTTILLLL
Exceplion
Physical
Nemory

*

Dl

Processar |-

Data

Physically Addressed Cache

Vil

Address

it
Cache

”."

Ogla

Vel
Aedress

Ol

TLB

He

v
Frame

Yintuy
Adsress

""3 R —

Page
Tabke

Val

L
Frame

Pryzcal
Address

Irrealed oooeeee

Physical
Cache

HE

Data

, Rataw
Exceplion

Physical
Address

Firpsical
Memary

Dats

When Do TLBs Work/Not Work?

Video Frame Buftfer
* Video Frame Pages

Buffer: 32 bits 1
X 1K x 1K = ‘

4MB

Superpages

* On many systems, TLB entry can be
— A page
— A superpage: a set of contiguous pages
* x86: superpage is set of pages in one page table

— X86 TLB entries
* 4KB
* 2MB
*1GB

Superpages

Vit
Addrass
Pm. m"u e :
sP Oftset

Transhation Loskasige Bulfer (TLE)

Superpape Superfrane
I5F) or {SF) or :
Pages Fame Acoms Physical |

Address ,

Matchieg Entry [-(3)-- Bl I el -+ Frame | Offset

Nalchng :
Swpeame '@'-F

Physical
Memory

When Do TLBs Work/Not Work, part 2

* What happens when the OS changes the
permissions on a page?

— For demand paging, copy on write, zero on
reference, ...

* TLB may contain old translation
— OS must ask hardware to purge TLB entry

* On a multicore: TLB shootdown
— OS must ask each CPU to purge TLB entry

TLB Shootdown

Procasy
D VirualPaps Pageframe ALoass
- 0 0»0053 20023 RN
Processor 1 TLB
- 1| OadOFF G001z | e
Y T
- 0 2»0053 00023 RN
Processor2 TLB -
- 0 | 0000 0205 ey
. 1 | GadOFF ; ™
Processor 3 TLB | 040 e | -
- 0 2x0031 00035 Aead

When Do TLBs Work/Not Work, part 3

* What happens on a context switch?
— Reuse TLB?
— Discard TLB?

* Solution: Tagged TLB

— Each TLB entry has process ID
— TLB hit only if process ID matches current process

Implementation
Procassor
Virtual
Address
--------- *| Paged | Olget
Transtation Lookasde Bulfer (TLE)
Pm“ lD 0
: Procuss 1D Page Frame Access Paysical -

Adgrass ,

Physical
Memory

Pags
Frame

Question

 With a virtual cache, what do we need to do
on a context switch?

Aliasing

 Alias: two (or more) virtual cache entries that
refer to the same physical memory
— A consequence of a tagged virtually addressed cache!
— A write to one copy needs to update all copies

* Typical solution

— Keep both virtual and physical address for each entry
in virtually addressed cache

— Lookup virtually addressed cache and TLB in parallel

— Check if physical address from TLB matches multiple
entries, and update/invalidate other copies

Multicore and Hyperthreading

Modern CPU has several functional units

— Instruction decode

— Arithmetic/branch

— Floating point

— |Instruction/data cache

— TLB

Multicore: replicate functional units (i7: 4)

— Share second/third level cache, second level TLB
Hyperthreading: logical processors that share
functional units (i7: 2)

— Better functional unit utilization during memory stalls
No difference from the OS/programmer perspective
— Except for performance, affinity, ...

Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes

Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory

Dynamic memory allocation
— Allocate and initialize stack/heap pages on demand

Address Translation (more)

Cache management

— Page coloring

Program debugging

— Data breakpoints when address is accessed
Zero-copy |/O

— Directly from 1/O device into/out of user memory
Memory mapped files

— Access file data using load/store instructions
Demand-paged virtual memory

— lllusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpointing/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally

Distributed shared memory
— lllusion of memory that is shared between machines

And If You Want More...

https://www.academia.edu/29585076/A Survey of Technigues for Architecting TLB
S

https://www.academia.edu/29585076/A_Survey_of_Techniques_for_Architecting_TLBs
https://www.academia.edu/29585076/A_Survey_of_Techniques_for_Architecting_TLBs

