
Address Translation



Main Points

• Address Translation Concept
– How do we convert a virtual address to a physical 

address?
• Flexible Address Translation
– Base and bound
– Segmentation
– Paging
– Multilevel translation

• Efficient Address Translation
– Translation Lookaside Buffers
– Virtually and physically addressed caches



Address Translation Concept



Address Translation Goals

• Memory protection
• Memory sharing
– Shared libraries, interprocess communication

• Sparse addresses
– Multiple regions of dynamic allocation (heaps/stacks)

• Efficiency
– Memory placement
– Runtime lookup
– Compact translation tables

• Portability



Bonus Feature

• What can you do if you can (selectively) gain 
control whenever a program reads or writes a 
particular virtual memory location?

• Examples:
– Copy on write
– Zero on reference
– Fill on demand
– Demand paging
– Memory mapped files
– …



A Preview: X86 Address Translation

• Translation lookaside buffer (TLB)
– Cache of virtual page -> physical page translations
– If TLB hit, physical address
– If TLB miss

• Hardware TLB: walk the page table
• Software TLB: trap to kernel; fills TLB with translation and resumes 

execution

• Software TLB kernel can implement any page 
translation
– Page tables
– Multi-level page tables
– Inverted page tables
– …



Virtually Addressed Base and Bounds



Question

• With virtually addressed base and bounds, 
what is saved/restored on a process context 
switch?



Virtually Addressed Base and Bounds

• Pros?
– Simple
– Fast (2 registers, adder, comparator)
– Safe
– Can relocate in physical memory without changing 

process
• Cons?
– Can’t keep program from accidentally overwriting its 

own code
– Can’t share code/data with other processes
– Can’t grow stack/heap as needed



Segmentation

• Segment is a contiguous region of virtual memory

• Each process has a segment table (in hardware)
– Entry in table = segment

• Segment can be located anywhere in physical 
memory
– Each segment has: start, length, access permission

• Processes can share segments
– Same start, length, same/different access permissions



Segmentation



main: 240 store #1108, r2

244 store pc+8, r31

248 jump 360

24c

…
strlen: 360 loadbyte (r2), r3

… …
420 jump (r31)

…
x: 1108 a b c \0

…

x: 108 a b c \0

…
main: 4240 store #1108, r2

4244 store pc+8, r31

4248 jump 360

424c

… …
strlen: 4360 loadbyte (r2),r3

…
4420 jump (r31)

…

Segment start length

code 0x4000 0x700

data 0 0x500

heap - -

stack 0x2000 0x1000
Virtual Memory Physical Memory

2 bit segment #
12 bit offset



Question

• With segmentation, what is saved/restored on 
a process context switch?



UNIX fork and Copy on Write

• UNIX fork
– Makes a complete copy of a process

• Segments allow a more efficient implementation
– Copy segment table into child
– Mark parent and child segments read-only
– Start child process; return to parent
– If child or parent writes to a segment (ex: stack, 

heap)
• trap into kernel
• make a copy of the segment and resume





Zero-on-Reference

• How much physical memory is needed for the 
stack or heap?
– Only what is currently in use

• When program uses memory beyond end of stack
– Segmentation fault into OS kernel

– Kernel allocates some memory
• How much?

– Zeros the memory
• avoid accidentally leaking information!

– Modify segment table

– Resume process



Segmentation

• Pros?
– Can share code/data segments between processes
– Can protect code segment from being overwritten
– Can transparently grow stack/heap as needed
– Can detect if need to copy-on-write

• Cons?
– Complex memory management

• Need to find chunk of a particular size

– May need to rearrange memory from time to time to 
make room for new segment or growing segment
• External fragmentation: wasted space between chunks



Paged Translation

• Manage physical memory in fixed size units, or 
pages

• Finding a free page is easy
– Bitmap allocation: 0011111100000001100
– Each bit represents one physical page frame

• Each process has its own page table
– Stored in physical memory
– Hardware registers

• pointer to page table start
• page table length



Paged Translation (Abstract)



Paged Translation (Implementation)



A
B
C
D

E
F
G
H

I
J
K
L

I
J
K
L

E
F
G
H

A
B
C
D

4

3

1

Page 
Table

Process View Physical Memory



Paging Questions

• With paging, what is saved/restored on a 
process context switch?
– Pointer to page table, size of page table

– Page table itself is in main memory

• What if page size is very small?

• What if page size is very large?
– Internal fragmentation: if we don’t need all of the 

space inside a fixed size chunk



Paging and Copy on Write

• Can we share memory between processes?
– Set entries in both page tables to point to same page frames
– Need core map of page frames to track which processes are 

pointing to which page frames (e.g., reference count)

• UNIX fork with copy on write
– Copy page table of parent into child process
– Mark all pages (in new and old page tables) as read-only
– Trap into kernel on write (in child or parent)
– Copy page
– Mark both as writeable
– Resume execution



Demand Paging

• Can I start running a program before its code is in 
physical memory?
– Set all page table entries to invalid

– When a page is referenced for first time, kernel trap

– Kernel brings page in from disk

– Resume execution

– Remaining pages can be transferred in the 
background while program is running



Sparse Address Spaces

• Might want many separate dynamic 
segments
– Per-processor heaps
– Per-thread stacks
– Memory-mapped files
– Dynamically linked libraries

• What if virtual address space is large?
– 32-bits, 4KB pages => 500K page table entries
– 64-bits => 4 quadrillion page table entries



Multi-level Translation

• Tree of translation tables
– Paged segmentation 
– Multi-level page tables
– Multi-level paged segmentation

• Fixed-size page as lowest level unit of allocation
– Efficient memory allocation (compared to segments)
– Efficient for sparse addresses (compared to paging)
– Efficient disk transfers (fixed size units)
– Easier to build translation lookaside buffers
– Efficient reverse lookup (from physical -> virtual)
– Variable granularity for protection/sharing



Paged Segmentation

• Process memory is segmented
• Segment table entry:
– Pointer to page table
– Page table length (# of pages in segment)
– Access permissions

• Page table entry:
– Page frame
– Access permissions

• Share/protection at either page or segment-level



Paged Segmentation (Implementation)



Question

• With paged segmentation, what must be 
saved/restored across a process context 
switch?



Multilevel Paging



Question

• Write pseudo-code for translating a virtual 
address to a physical address for a system 
using 3-level paging. 



x86 Multilevel Paged Segmentation

• Global Descriptor Table (segment table)
– Segment virtual address
– Segment length
– Segment access permissions
– Context switch: change global descriptor table register 

(GDTR, pointer to global descriptor table)
• Multilevel page table
– 4KB pages; each level of page table fits in one page
– 32-bit: two level page table (per segment)
– 64-bit: four level page table (per segment)
– Omit sub-tree if no valid addresses



Multilevel Translation

• Pros:
– Allocate/fill only page table entries that are in use

– Simple memory allocation

– Share at segment or page level

• Cons:
– Space overhead: one pointer per virtual page

– Two (or more) lookups per memory reference



Portability

• Many operating systems keep their own 
memory translation data structures
– List of memory objects (segments)

– Virtual page -> physical page frame

– Physical page frame -> set of virtual pages

• One approach: Inverted page table
– Hash from virtual page -> physical page

– Space proportional to # of physical pages



Efficient Address Translation

• Translation lookaside buffer (TLB)
– Cache of recent virtual page -> physical page 

translations
– If cache hit, use translation
– If cache miss, walk multi-level page table (or trap 

to kernel)

• Cost of translation =
Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup



TLB and Page Table Translation



TLB Lookup



MIPS Software Loaded TLB

• Software defined translation tables
– If translation is in TLB, ok

– If translation is not in TLB, trap to kernel

– Kernel computes translation and loads TLB

– Kernel can use whatever data structures it wants

• Pros/cons?



Question

• What is the cost of a TLB miss on a modern 
processor?
– Cost of multi-level page table walk

– MIPS: plus cost of trap handler entry/exit



Hardware Design Principle

The bigger the memory, the slower the memory



Intel i7



Memory Hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core



Question

• What is the cost of a first level TLB miss?
– Second level TLB lookup

• What is the cost of a second level TLB miss?
– x86: 2-4 level page table walk

• How expensive is a 4-level page table walk on 
a modern processor?



Virtually Addressed vs. Physically 
Addressed Caches

• Too slow to first access TLB to find physical 
address, then look up address in the cache

• Instead, first level cache is virtually addressed

• In parallel, access TLB to generate physical 
address in case of a cache miss



Virtually Addressed Caches



Physically Addressed Cache



When Do TLBs Work/Not Work?

• Video Frame 
Buffer: 32 bits 
x 1K x 1K = 
4MB



Superpages

• On many systems, TLB entry can be
– A page

– A superpage: a set of contiguous pages

• x86: superpage is set of pages in one page table
– x86 TLB entries

• 4KB

• 2MB

• 1GB



Superpages



When Do TLBs Work/Not Work, part 2

• What happens when the OS changes the 
permissions on a page?
– For demand paging, copy on write, zero on 

reference, …
• TLB may contain old translation
– OS must ask hardware to purge TLB entry

• On a multicore: TLB shootdown
– OS must ask each CPU to purge TLB entry



TLB Shootdown



When Do TLBs Work/Not Work, part 3

• What happens on a context switch?
– Reuse TLB?

– Discard TLB?

• Solution: Tagged TLB
– Each TLB entry has process ID

– TLB hit only if process ID matches current process





Question

• With a virtual cache, what do we need to do 
on a context switch?



Aliasing

• Alias: two (or more) virtual cache entries that 
refer to the same physical memory
– A consequence of a tagged virtually addressed cache!
– A write to one copy needs to update all copies

• Typical solution
– Keep both virtual and physical address for each entry 

in virtually addressed cache
– Lookup virtually addressed cache and TLB in parallel
– Check if physical address from TLB matches multiple 

entries, and update/invalidate other copies



Multicore and Hyperthreading

• Modern CPU has several functional units
– Instruction decode
– Arithmetic/branch
– Floating point
– Instruction/data cache
– TLB

• Multicore: replicate functional units (i7: 4)
– Share second/third level cache, second level TLB

• Hyperthreading: logical processors that share 
functional units (i7: 2)
– Better functional unit utilization during memory stalls

• No difference from the OS/programmer perspective
– Except for performance, affinity, …



Address Translation Uses

• Process isolation
– Keep a process from touching anyone else’s memory, or 

the kernel’s 
• Efficient interprocess communication

– Shared regions of memory between processes

• Shared code segments 
– E.g., common libraries used by many different programs

• Program initialization
– Start running a program before it is entirely in memory

• Dynamic memory allocation
– Allocate and initialize stack/heap pages on demand



Address Translation (more)

• Cache management
– Page coloring

• Program debugging
– Data breakpoints when address is accessed

• Zero-copy I/O
– Directly from I/O device into/out of user memory

• Memory mapped files
– Access file data using load/store instructions

• Demand-paged virtual memory
– Illusion of near-infinite memory, backed by disk or 

memory on other machines



Address Translation (even more)

• Checkpointing/restart
– Transparently save a copy of a process, without 

stopping the program while the save happens
• Persistent data structures
– Implement data structures that can survive system 

reboots
• Process migration
– Transparently move processes between machines

• Information flow control
– Track what data is being shared externally

• Distributed shared memory
– Illusion of memory that is shared between machines



And If You Want More…
https://www.academia.edu/29585076/A_Survey_of_Techniques_for_Architecting_TLB
s

https://www.academia.edu/29585076/A_Survey_of_Techniques_for_Architecting_TLBs
https://www.academia.edu/29585076/A_Survey_of_Techniques_for_Architecting_TLBs

