
The Kernel Abstraction



Debugging as Engineering

• Much of your time in this course will be spent 
debugging
– In industry, 50% of software dev is debugging
– Even more for kernel development

• How do you reduce time spent debugging?
– Produce working code with smallest effort

• Optimize a process involving you, code, 
computer



Debugging as Science

• Understanding -> design -> code
– not the opposite

• Form a hypothesis that explains the bug
– Which tests work, which don’t.  Why?
– Add tests to narrow possible outcomes

• Use best practices
– Always walk through your code line by line
– Module tests – narrow scope of where problem is
– Develop code in stages, with dummy replacements for 

later functionality



ABET

You can’t debug effectively without this:

b. Ability to design and conduct experiments, 
analyze and interpret data.



Booting



Device Interrupts

• OS kernel needs to communicate with physical 
devices

• Devices operate asynchronously from the CPU
– Polling: Kernel waits until I/O is done
– Interrupts: Kernel can do other work in the meantime

• Device access to memory
– Programmed I/O: CPU reads and writes to device
– Direct memory access (DMA) by device
– Buffer descriptor: sequence of DMA’s

• E.g., packet header and packet body
– Queue of buffer descriptors

• Buffer descriptor itself is DMA’ed



Device Interrupts

• How do device interrupts work?
– Where does the CPU run after an interrupt?
– What is the interrupt handler written in?  C? Java?
– What stack does it use?
– Is the work the CPU had been doing before the 

interrupt lost forever?  
– If not, how does the CPU know how to resume 

that work?



Challenge: Protection

• How do we execute code with restricted 
privileges?
– Either because the code is buggy or if it might be 

malicious
• Some examples:
– A script running in a web browser
– A program you just downloaded off the Internet
– A program you just wrote that you haven’t tested 

yet



A Problem



Main Points

• Process concept
– A process is the OS abstraction for executing a 

program with limited privileges
• Dual-mode operation: user vs. kernel
– Kernel-mode: execute with complete privileges
– User-mode: execute with fewer privileges

• Safe control transfer
– How do we switch from one mode to the other?



Process Abstraction

• Process: an instance of a program, running 
with limited rights
– Thread: a sequence of instructions within a 

process
• Potentially many threads per process (for now 1:1)

– Address space: set of rights of a process
• Memory that the process can access
• Other permissions the process has (e.g., which system 

calls it can make, what files it can access)



Thought Experiment

• How can we implement execution with limited 
privilege?
– Execute each program instruction in a simulator
– If the instruction is permitted, do the instruction
– Otherwise, stop the process
– Basic model in Javascript and other interpreted 

languages
• How do we go faster?
– Run the unprivileged code directly on the CPU!



Hardware Support: 
Dual-Mode Operation

• Kernel mode
– Execution with the full privileges of the hardware
– Read/write to any memory, access any I/O device, 

read/write any disk sector, send/read any packet
• User mode
– Limited privileges
– Only those granted by the operating system 

kernel
• On the x86, mode stored in EFLAGS register
• On the MIPS, mode in the status register



A Model of a CPU



A CPU with Dual-Mode Operation



Hardware Support:
Dual-Mode Operation

• Privileged instructions
– Available to kernel
– Not available to user code

• Limits on memory accesses
– To prevent user code from overwriting the kernel

• Timer
– To regain control from a user program in a loop

• Safe way to switch from user mode to kernel 
mode, and vice versa



Privileged instructions

• Examples?

• What should happen if a user program 
attempts to execute a privileged instruction?



Question

• For a “Hello world” program, the kernel must 
copy the string from the user program 
memory into the screen memory. 

• Why not allow the application to write directly 
to the screen’s buffer memory? 



Simple Memory Protection



Towards Virtual Addresses

• Problems with base and bounds?



Virtual Addresses
• Translation 

done in 
hardware, 
using a table

• Table set up by 
operating 
system kernel



Example

int staticVar = 0;      // a static variable
main() {
    staticVar += 1;
    sleep(10);  // sleep for x seconds
    printf ("static address: %x, value: %d\n", &staticVar, 

staticVar);
}
What happens if we run two instances of this program at 

the same time?
What if we took the address of a procedure local variable 

in two copies of the same program running at the 
same time?



Question

• With an object-oriented language and 
compiler, only an object’s methods can access 
the internal data inside an object. If the 
operating system only ran programs written in 
that language, would it still need hardware 
memory address protection? 

• What if the contents of every object were 
encrypted except when its method was 
running, including the OS?



Hardware Timer

• Hardware device that periodically interrupts 
the processor
– Returns control to the kernel handler
– Interrupt frequency set by the kernel

• Not by user code!

– Interrupts can be temporarily deferred 
• Not by user code!
• Interrupt deferral crucial for implementing mutual 

exclusion



Mode Switch

• From user mode to kernel mode
– Interrupts

• Triggered by timer and I/O devices
– Exceptions

• Triggered by unexpected program behavior
• Or malicious behavior!

– System calls (aka protected procedure call)
• Request by program for kernel to do some operation 

on its behalf
• Only limited # of very carefully coded entry points



Question

• Examples of exceptions

• Examples of system calls



Mode Switch

• From kernel mode to user mode
– New process/new thread start

• Jump to first instruction in program/thread

– Return from interrupt, exception, system call
• Resume suspended execution

– Process/thread context switch
• Resume some other process

– User-level upcall (UNIX signal)
• Asynchronous notification to user program



How do we take interrupts safely?
• Interrupt vector
– Limited number of entry points into kernel

• Atomic transfer of control
– Single instruction to change: 

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred



Interrupt Vector
• Table set up by OS kernel; pointers to code to 

run on different events



Interrupt Stack

• Per-processor, located in kernel (not user) 
memory
– Usually a process/thread has both: kernel and 

user stack
• Why can’t the interrupt handler run on the 

stack of the interrupted user process?



Interrupt Stack



Interrupt Masking

• Interrupt handler runs with interrupts off
– Re-enabled when interrupt completes

• OS kernel can also turn interrupts off
– Eg., when determining the next process/thread to run
– On x86

• CLI: disable interrrupts
• STI: enable interrupts
• Only applies to the current CPU (on a multicore)

• We’ll need this to implement synchronization in 
chapter 5



Interrupt Handlers

• Non-blocking, run to completion
– Minimum necessary to allow device to take next 

interrupt
– Any waiting must be limited duration
– Wake up other threads to do any real work

• Linux: semaphore

• Rest of device driver runs as a kernel thread



Case Study: MIPS Interrupt/Trap

• Two entry points: TLB miss handler, everything else
• Save type: syscall, exception, interrupt
– And which type of interrupt/exception

• Save program counter: where to resume
• Save old mode, interruptable bits to status register
• Set mode bit to kernel
• Set interrupts disabled
• For memory faults
– Save virtual address and virtual page

• Jump to general exception handler



Case Study: x86 Interrupt

• Save current stack pointer
• Save current program counter
• Save current processor status word (condition 

codes)
• Switch to kernel stack; put SP, PC, PSW on stack
• Switch to kernel mode
• Vector through interrupt table
• Interrupt handler saves registers it might clobber



Before Interrupt



During Interrupt



After Interrupt



Question

• Why is the stack pointer saved twice on the 
interrupt stack?
– Hint: is it the same stack pointer?



At end of handler

• Handler restores saved registers
• Atomically return to interrupted 

process/thread
– Restore program counter
– Restore program stack
– Restore processor status word/condition codes
– Switch to user mode



Upcall: User-level event delivery

• Notify user process of some event that needs 
to be handled right away
– Time expiration

• Real-time user interface
• Time-slice for user-level thread manager

– Interrupt delivery for VM player
– Asynchronous I/O completion (async/await)

• AKA UNIX signal



Upcalls vs Interrupts

• Signal handlers = interrupt vector
• Signal stack = interrupt stack
• Automatic save/restore registers = 

transparent resume
• Signal masking: signals disabled while in signal 

handler



Upcall: Before



Upcall: During







Kernel System Call Handler

• Locate arguments
– In registers or on user stack
– Translate user addresses into kernel addresses

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back into user memory 
– Translate kernel addresses into user addresses







User-Level Virtual Machine

• How does VM Player work?
– Runs as a user-level application
– How does it catch privileged instructions, interrupts, 

device I/O?
• Installs kernel driver, transparent to host kernel
– Requires administrator privileges!
– Modifies interrupt table to redirect to kernel VM code
– If interrupt is for VM, upcall
– If interrupt is for another process, reinstalls interrupt 

table and resumes kernel


