Operating Systems:
Principles and Practice

Mark Zbikowski
Gary Kimura
(kudos to Tom Anderson)

How This Course Fits in the UW CSE
Curriculum

* CSE 333: Systems Programming
— Project experience in C/C++
— How to use the operating system interface

* CSE 451: Operating Systems
— How to make a single computer work reliably
— How an operating system works internally

e CSE 452: Distributed Systems (spring 2018)

— How to make a set of computers work reliably,
despite failures of some nodes

Main Points (for today)

* Operating system definition

— Software to manage a computer’s resources for its
users and applications

* OS challenges

— Reliability, security, responsiveness, portability, ...

* OS history

— How did we get here?

* How I/O works

Usars
What is an
. Lser-mode
operating system?
e Software to
manage d Karnel-mode
computer’s
resources for its
users and
applications
Hardwara

APF

Syubar
Libeary

a &

HFP &FP

Spalem Lalem
Library Ly

Kamed-igar inteilacs

,

| File Sysdam J Wiriual Mmooy |

abslrasl viitugl mashens|
o ™y

—

I.-. - _.-'I

.-‘-
]

L
=

| TCPAF Retmarkieg I|
g

", I.e' !
Erbe=iuiling |

- a s

-~

s

Hardmares Shstrachion Lasper

"
Fardwarn EPEI:HF: Eglsare

and Device Drivess ,
-

l._i' -_.l I_."-
| Pracussoes | | Addras Trassdatine
I"-.._ __.-'I '.__-- .

& &
] i
Graghics Procassn Melwirs

Il-'-\. - 3 I-'\'--

|

J

r,

Operating System Roles

* Referee:
— Resource allocation among users, applications
— Isolation of different users, applications from each other
— Communication between users, applications

e |llusionist

— Each application appears to have the entire machine to
itself

— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

e Glue
— Libraries, user interface widgets, ...

Example: File Systems

e Referee

— Prevent users from accessing each other’s files
without permission

— Even after a file is deleting and its space re-used
* |[lusionist

— Files can grow (nearly) arbitrarily large

— Files persist even when the machine crashes in the
middle of a save

e Glue
— Named directories, printf, ...

Question

 What (hardware, software) do you need to be
able to run an untrustworthy application?

Question

* How should an operating system allocate
processing time between competing uses?
— Give the CPU to the first to arrive?

— To the one that needs the least resources to
complete? To the one that needs the most
resources?

Example: web service

! I__.—-_-—|__.
{1} (2] f—————
HTTP GET indes.himl | Rzad fle: no=s.himl
k| _ B
Clian : Saryar indax. htmi
L | i f
{4) ' (3]
HTTP wek page Fle daka 1-.__ = —

 How does the server manage many simultaneous
client requests?

* How do we keep the client safe from spyware
embedded in scripts on a web site?

* How do make updates to the web site so that clients
always see a consistent view?

OS Challenges

Reliability

— Does the system do what it was designed to do?
Availability

— What portion of the time is the system working?

— Mean Time To Failure (MTTF), Mean Time to Repair

Security
— Can the system be compromised by an attacker?

Privacy
— Data is accessible only to authorized users

OS Challenges - e

User-mods
APF &FF LEP
i PO rta bi I ity Syidam Spalem Cealem
Libeary LiErarny Lihidry
— For programs: Komalmode [guaswt o e
* Application programming |“ — J e '|
interface (API) — S
* Abstract virtual machine L_ B . _3.|
(AVM) Hardwmare Abstracticn Layer
. - B
— For the operating system | P Spactc Sote |
L =
 Hardware abstraction ' - -

Fy Y A Y

|ayer Hardwars i. Fracassors .: Adgrase Trass glioe
- I N A
s R =
Graghks Prodageni Melwirk

|
e - e -

OS Challenges

e Performance

— Latency/response time
* How long does an operation take to complete?
— Throughput
* How many operations can be done per unit of time?

— Overhead
* How much extra work is done by the OS?

— Fairness
* How equal is the performance received by different users?

— Predictability
* How consistent is the performance over time?

OS History

I'.'I‘.;'E__ | Mukhcs
MS/DOS S wiraTo UNLX
Windows B0 UNIX Mach
'|I'I|"|I'|-|'.'I|:|u'.l.'5- NT WMWare |J|'.I.|J:l: I'-.Il':'".'-'J MacD5s
|
Windows 8 HE-L"EI'E- x
Inf e |

Crs comdant Androd [aid

Computer Performance Over Time

Facior
(2014/1981)

Uniprocessor spead (MIPS)

CPUs per computer
Procassaor MIPSS
ODRAM Capacity (MIB|/S
Disk Capacity (EIB)'E
Hame Irlannat

hMachine mam nateork

Hatip of users
b cormputens

100K

300 bips

10Mbps
| Earad|

256 Kbps 20Mbps

100 Mbps
[switched) (switchad)

10 Gbps

1 gagargl

2 5K
10+

SD0K
S00K
100

100K

10ad

100+

Early Operating Systems:
Computers Very Expensive

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer

e Batch systems

— Keep CPU busy by having a queue of jobs
— OS would load next job while current one runs
— Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systems:
Computers and People Expensive

* Multiple users on computer at same time

— Multiprogramming: run multiple programs at
same time

— Interactive performance: try to complete
everyone’s tasks quickly

— As computers became cheaper, more important
to optimize for user time, not computer time

Today’s Operating Systemes:
Computers Cheap

 Smartphones

* Embedded systems
* Laptops

* Tablets

* Virtual machines

* Data center servers

Tomorrow’s Operating Systems

 Giant-scale data centers

* Increasing numbers of processors per
computer

* Increasing numbers of computers per user
* Very large scale storage

Device |I/0O

* OS kernel needs to communicate with physical
devices

— Netowrk, disk, video, USB, keyboard, mouse, ...

* Devices operate asynchronously from the CPU

— Most have their own microprocessor
— Ex> Apple Watch OS runs with a laptop keyboard!

Device |I/0O

e How does the OS communicate with the device?

— |.0 devices assigned a range of memory addresses or
“ports”

— Separate from main RAM

— CPU instructions to command/read
* Special |/O-specific instructions (inb/outb)
e Read/write memory locations

Synchronous I/0O

* Polling

— 1/O operations take time: 1073 instructions to
1078 instructions (physical limits)

— OS pokes I/O memory/port to see if I/O is done

— Device completes and stores data in device
buffers

— Kernel copies data from device into memory
— Ugh
* Can we do better?

Faster 1/O: Interrupts

* Interrupts: let device tell is when it is done
— OS pokes I/0 memory/port to issue request
— CPU goes back to work on some other task
— Device completes, stores data in its buffers
— Triggers CPU interrupt to signal I/O completion
— CPU copies data to/from device
— When done, resume previous work

e Can we do better?

Faster |/O: DMA

* “Programmed 1/0”
— 1/0O stored in the device
— Requires CPU to do heavy lifting

— Each instruction to move data is uncached, meaning
direct transfers over the I/O bus

* Direct memory access (DMA)
— Device reads/writes RAM directly
— After I/O interrupt, CPU can access results in memory

e Can we do better?

Faster I/O: Buffer Descriptors

e Buffer descriptor: data structure to specify
where to find the next I/0 request

— Buffer descriptor itself is DMA'd!

* CPU/Device share a queue of buffer
descriptors

* Only interrupt if queue is empty or full

Device Interrupts

* How do device interrupts work?
— How does the CPU know what code to run?
— What language is the “interrupt handler” written
in?
— What stack does it use?

— What about the work the CPU was doing when it
was interrupted?

— How does the CPU know how to resume that
work?

Hardware Interrupt Vector

* Table set up by OS kernel
— Pointers to functions
— One per interrupt “type”

— Indexed and dispatched by the CPU; no software
involvement

— Likely needs a little assembly code help...

Challenge: Saving/Restoring State

 We need to transparently resume execution, e.g.,
the execution of the interrupt handler is invisible
to (almost) all running code.

— Many interrupts going on
* |/O completion
* Periodic timer to share CPU among multiple apps

— Code must remain unaware that it was interrupted

* Not just instruction pointer
— Registers
— Floating point state
— Condition codes.

Textbook

* Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each
chapter once we've covered the
corresponding material... more of it will make
sense then. Don't save this re-reading until
right before the mid-term or final — keep up.”

