
CSE 451:

Operating

Systems

Winter 2017

Module 23

Distributed File

Systems

Mark
Zbikowski
mzbik@cs.
washingto

n.edu
Allen

Center 476
© 2013 Gribble, Lazowska, Levy, Zahorjan

© 2013 Gribble, Lazowska, Levy, Zahorjan 22

Distributed File Systems

• A distributed file systems supports network-wide
sharing of files and devices

• A DFS typically presents clients with a “traditional” file
system view
– there is a single file system namespace that all clients see
– files can be shared
– one client can observe the side-effects of other clients’ file

system activities
– in many (but not all) ways, an ideal distributed file system

provides clients with the illusion of a shared, local file system

• But …with a distributed implementation
– read blocks / files from remote machines across a network,

instead of from a local disk

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

DFS issues

• What is the basic abstraction
– a remote file system?

• open, close, read, write, …
– a remote disk?

• read block, write block

• Naming
– how are files named?
– are those names location transparent?

• is the file location visible to the user?
• do the names change if the file moves?
• do the names change if the user moves?

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

• Caching
– caching exists for performance reasons
– where are file blocks cached?

• on the file server?
• on the client machine?
• both?

• Sharing and coherency
– what are the semantics of sharing?
– what happens when a cached block/file is modified?
– how does a node know when its cached blocks are stale?

• if we cache on the client side, we’re presumably caching on
multiple client machines if a file is being shared

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

• Replication
– replication can exist for performance and/or availability
– can there be multiple copies of a file in the network?
– if multiple copies, how are updates handled?
– what if there’s a network partition? Can clients work on

separate copies? If so, how does reconciliation take place?

• Performance
– what is the performance of remote operations?
– what is the additional cost of file sharing?
– how does the system scale as the number of clients grows?
– what are the performance bottlenecks: network, CPU, disks,

protocols, data copying?

© 2013 Gribble, Lazowska, Levy, Zahorjan 6

Process 1 Process 2 (child) Process 3

channel
table

channel
table

channel
table

open file
table

file offset

memory-resident
i-node table

Reminder: Single-system Unix file sharing

file offset

file buffer cache

disk

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Example: Sun’s Network File System (NFS)
• The Sun Network File System (NFS) has become a common

standard for distributed UNIX file access
• NFS runs over LANs (even over WANs – slowly)
• Basic idea

– allow a remote directory to be “mounted” (spliced) onto a local
directory

– gives access to that remote directory and all its descendants as if
they were part of the local hierarchy

• Pretty similar (except for implementation and performance) to a
“local mount” or “link” on UNIX
– I might link

/cse/www/education/courses/cse451/15wi/

 as
/u4/garyki/451

 to allow easy access to my web data from my home directory:
cd
ln –s /cse/www/education/courses/cse451/15wi 451

© 2013 Gribble, Lazowska, Levy, Zahorjan 88

• barb.cs exports the directory barb.cs:/u4/garyki
• attu.cs mounts this on /faculty/gk

– programs on attu.cs can access the remote directory
barb.cs:/u4/garyki using the local path /faculty/gk

• if, on barb.cs, I had a file /u4/garyki/myfile.txt
– programs on attu.cs could access it as /faculty/gk/myfile.txt

• note that different clients might mount the same exported
directory, but on different local paths
– e.g., forkbomb.cs might mount it on /facultyfiles/gdkimura
– then, the file barb.cs:/u4/garyki/myfile.txt could be accessed

with three different names
• on barb.cs: /u4/garyki/myfile.txt
• on attu.cs: /faculty/gk/myfile.txt
• on forkbomb.cs: /facultyfiles/gdkimura/myfile.txt

NFS particulars

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

NFS implementation

• NFS defines a set of RPC operations for remote file
access:
– searching a directory
– reading directory entries
– manipulating links and directories
– reading/writing files

• Every node may be a client, a server, or both
– E.g., a given machine might export some directories and

import others

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

• NFS defines new layers in the Unix file system

System Call Interface

Virtual File System

buffer cache / i-node table

(local files) (remote files)

UFS NFS

The virtual file system (VFS) provides a
standard interface, using v-nodes as
file handles. A v-node describes either
a local or remote file.

RPCs to other (server) nodes

RPC requests from remote clients,
and server responses

© 2013 Gribble, Lazowska, Levy, Zahorjan 1111

NFS caching / sharing

• On a file open, the client asks the server whether the
client’s cached blocks are up to date (good!)
– but, once a file is open, different clients can perform

concurrent reads and writes to it and get inconsistent data
(bad!)

• Modified data is flushed back to the server every 30
seconds
– the good news is this bounds the amount of inconsistency to

a window of 30 seconds, and that this is simple to implement
and understand

– the bad news is that the inconsistency can be severe
• e.g., data can be lost, different clients can see inconsistent

states of the files at the same time

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

Example: CMU’s Andrew File System (AFS)

• Developed at CMU to support all of its student
computing

• Consists of workstation clients and dedicated file
server machines (differs from NFS)

• Workstations have local disks, used to cache files
being used locally (originally whole files,
subsequently 64K file chunks) (differs from NFS)

• Andrew has a single name space – your files have
the same names everywhere in the world (differs
from NFS)

• Andrew is good for distant operation because of its
local disk caching: after a slow startup, most
accesses are to local disk

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

AFS caching/sharing

• Need for scaling required reduction of client-server
message traffic
– Once a file is cached, all operations are performed locally
– On close, if the file has been modified, it is replaced on the

server

• The client assumes that its cache is up to date,
unless it receives a callback message from the server
saying otherwise
– on file open, if the client has received a callback on the file, it

must fetch a new copy; otherwise it uses its locally-cached
copy (differs from NFS)

• What if two users are accessing the same file?

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

Example: Berkeley Sprite File System

• Unix file system developed for diskless workstations
with large memories (differs from NFS, AFS)

• Considers memory as a huge cache of disk blocks
– memory is shared between file system and VM

• Files are permanently stored on servers
– servers have a large memory that acts as a cache as well

• Several workstations can cache blocks for read-only
files

• If a file is being written by more than 1 machine,
client caching is turned off – all requests go to the
server (differs from NFS, AFS)
– So improved coherence, at higher cost

© 2013 Gribble, Lazowska, Levy, Zahorjan 1515

Example: Google’s File System (GFS)

Independence
Small Scale
Variety of workloads

Cooperation
Large scale
Very specific, well-understood workloads

NFS, etc.

GFS

© 2013 Gribble, Lazowska, Levy, Zahorjan 1616

GFS: Environment

Why did Google build its own file system?

• Google has unique FS requirements
– huge volume of data
– huge read/write bandwidth
– reliability over tens of thousands of nodes with frequent failures
– mostly operating on large data blocks
– needs efficient distributed operations

• Google has somewhat of an unfair advantage…it has control
over, and customizes, its:
– applications
– libraries
– operating system
– networks
– even its computers!

© 2013 Gribble, Lazowska, Levy, Zahorjan 1717

GFS: Files

• Files are huge by traditional standards (GB, TB, PB)
• Most files are mutated by appending new data rather

than overwriting existing data
• Once written, the files are only read, and often only

sequentially.
• Appending becomes the focus of performance

optimization and atomicity guarantees

• NOTE: A major use of GFS is for storing event logs –
what did you search for, which link did you follow, etc.
 Then these logs are mined for patterns. Hence
huge, append-only, read sequentially.

© 2013 Gribble, Lazowska, Levy, Zahorjan 18

GFS: Architecture

• A GFS cluster consists of a replicated master and multiple chunk servers
and is accessed by multiple clients

• Each computer in the GFS cluster is typically a commodity Linux machine
running a user-level server process

• Files are divided into fixed-size chunks identified by an immutable and
globally unique 64-bit chunk handle

• For reliability, each chunk is replicated on multiple chunk servers
• The master maintains all file system metadata (like, on which chunk

servers specific chunks are stored)
• The master periodically communicates with each chunk server in

HeartBeat messages to determine its state
• Clients communicate with the master (to access metadata (e.g., to find the

location of specific chunks)) and directly with chunk servers (to actually
access the data)
– Prevents the single master from becoming a bottleneck

• Neither clients nor chunk servers cache file data, eliminating cache
coherence issues
– Caching not helpful because most ops are huge sequential reads

• Clients do cache metadata, however
• If the master croaks, Paxos is used to select a new master from among

the replicas

© 2013 Gribble, Lazowska, Levy, Zahorjan 1919

GFS: Architecture

• Masters manage metadata (naming, chunk location, etc.)
• Data transfers happen directly between clients/chunkservers
• Files are broken into chunks (typically 64 MB)

• each chunk replicated on 3 chunkservers

• Clients do not cache data!

© 2013 Gribble, Lazowska, Levy, Zahorjan 20

GFS: Reading

• Single master vastly simplifies design
• Clients never read and write file data through the master.

Instead, a client asks the master which chunk servers it should
contact

• Using the fixed chunk size, the client translates the file name
and byte offset specified by the application into a chunk index
within the file

• It sends the master a request containing the file name and
chunk index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key

• The client then sends a request to one of the replicas, most
likely the closest one. The request specifies the chunk handle
and a byte range within that chunk

© 2013 Gribble, Lazowska, Levy, Zahorjan 21

GFS: Writing

• Primary orders concurrent
requests, and triggers disk
writes at all replicas

• Primary reports success or
failure to client

• The write is transactional

• Client asks master for identity of primary and
secondary replicas (chunk servers)

• Client pushes data to memory at all replicas via a
replica-to-replica “chain”

• Client sends write request to primary

© 2013 Gribble, Lazowska, Levy, Zahorjan 2222

Summary of Distributed File Systems

• There are a number of issues to deal with:
– what is the basic abstraction?
– naming
– caching
– sharing and coherency
– replication
– performance
– workload

• No right answer! Different systems make different
tradeoffs…

© 2013 Gribble, Lazowska, Levy, Zahorjan 23

• Performance is always an issue
– always a tradeoff between performance and the semantics

of file operations (e.g., for shared files).

• Caching of file data is crucial in any file system
– maintaining coherency is a crucial design issue.

• Newer systems are dealing with issues such as
disconnected operation for mobile computers, and
huge workloads (e.g., Google)

© 2013 Gribble, Lazowska, Levy, Zahorjan 24

Think about …

• NFS, AFS, Sprite, GFS
– How do they differ? What are the key properties of each?
– What about the intended environment for each drove these

differences?

	Slide 1
	Distributed File Systems
	DFS issues
	Slide 4
	Slide 5
	Reminder: Single-system Unix file sharing
	Example: Sun’s Network File System (NFS)
	NFS particulars
	NFS implementation
	Slide 10
	NFS caching / sharing
	Example: CMU’s Andrew File System (AFS)
	AFS caching/sharing
	Example: Berkeley Sprite File System
	Example: Google’s File System (GFS)
	GFS: Environment
	GFS: Files
	GFS: Architecture
	GFS: Architecture
	GFS: Reading
	GFS: Writing
	Summary of Distributed File Systems
	Slide 23
	Think about …

