
CSE 451:

Operating

Systems

Winter 2017

Module 22

Remote

Procedure Call

(RPC)

Mark
Zbikowski
mzbik@cs.
washingto

n.edu
Allen

Center 476
© 2013 Gribble, Lazowska, Levy, Zahorjan

© 2013 Gribble, Lazowska, Levy, Zahorjan 22

What’s Interesting about RPC?

• RPC = Remote Procedure Call
– the most common means for remote communication
– used both by operating systems and applications

• NFS is implemented as a set of RPCs
• HTTP is essentially RPC
• DCOM, CORBA, Java RMI, etc., are just RPC systems

• Allows you to communicate over a network with
syntax and semantics very similar to local procedure
call

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

Client/Server communication

• The prevalent model for structuring distributed computation is
the client/server paradigm
– a server is a program (or collection of programs) that provides a

service to other programs
• e.g., file server, name server, web server, mail server …
• server/service may span multiple nodes (clusters)

– often, nodes are called servers too
– e,g., the web server runs on a Dell server computer

– a client is a program that uses the service
• the client first binds to the server

– locates it, establishes a network connection to it
• the client then sends requests (with data) to perform actions, and the

server sends responses (with data)
– e.g., web browser sends a “GET” request, server responds with a web

page

• TCP/IP is the transport, but what is the higher-level
programming model?

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

Messages

• Initially, people “hand-coded” messages to send
requests and responses
– message is a stream of bytes – “op codes” and operands

• Lots of drawbacks
– need to worry about message format
– have to pack and unpack data from messages
– servers have to decode messages and dispatch to handlers
– messages are often asynchronous

• after sending one, what do you do until response comes back?
– messages aren’t a natural programming model

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

Procedure calls

• Procedure calls are a natural way to structure
multiple modules inside a single program
– every language supports procedure calls
– semantics are well-defined and well-understood
– programmers are used to them

• “Server” (called procedure) exports an API
– think about a file system / file server API: open, close, read,

write, sync, etc.

• “Client” (calling procedure) calls the server
procedure’s API

• Linker binds the two together

© 2013 Gribble, Lazowska, Levy, Zahorjan 6

Procedure call example

• If the server were just a library, then “Add” would just
be a local procedure call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
 return x + y;
}

Server API:

int Add(int x, int y;

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Remote Procedure Call

• Use procedure calls as the model for distributed
(remote) communication
– traditional procedure call syntax and semantics
– have servers export a set of procedures that can be called

by client programs
• similar to library API, class definitions, etc.

– clients do a local procedure call, as though they were
directly linked with the server

• under the covers, the procedure call is converted into a
message exchange with the server

• largely invisible to the programmer!

© 2013 Gribble, Lazowska, Levy, Zahorjan 8

• There are a bunch of hard issues:
– how do we make the “remote” part of RPC invisible to the

programmer?
• and is that a good idea?

– what are the semantics of parameter passing?
• what if we try to pass by reference?

– how do we bind (locate/connect-to) servers?
– how do we handle heterogeneity?

• OS, language, architecture, …
– how do we make it go fast?

RPC issues

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

RPC model

• A server defines the service interface using an
interface definition language (IDL)
– the IDL specifies the names, parameters, and types for all

client-callable server procedures
• example: ASN.1 in the OSI reference model
• example: Sun’s XDR (external data representation)

• A “stub compiler” reads the IDL declarations and
produces two stub procedures for each server
procedure
– the server programmer implements the service’s procedures

and links them with the server-side stubs
– the client programmer implements the client program and

links it with the client-side stubs
– the stubs manage all of the details of remote communication

between client and server using the RPC runtime system

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

RPC stubs

• A client-side stub is a procedure that looks to the client as if it
were a callable server procedure
– it has the same API as the server’s implementation of the

procedure
– a client-side stub is just called a “stub” in Java RMI

• A server-side stub looks like a caller to the server
– it looks like a hunk of code that invokes the server procedure
– a server-side stub is called a “skeleton” or “skel” in Java RMI

• The client program thinks it’s invoking the server
– but it’s calling into the client-side stub

• The server program thinks it’s called by the client
– but it’s really called by the server-side stub

• The stubs send messages to each other, via the runtime, to
make the RPC happen transparently

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

Procedure Call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
 return x + y;
}

Server API:

int Add(int x, int y;

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

Remote Procedure Call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
 return x + y;
}

client-side stub:

int Add(int x, int y) {
 alloc message buffer;
 mark as “add” call;
 store x,y in buffer;
 send message;
 receive response;
 unpack response;
 return response;
}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
 remove x,y from m;
 r = Add(x,y);
 allocate response buffer;
 store r in response;
 return response;
}

RPC runtime system:

receive message m;
response = Add_Stub(m);
send response to client;

proc.
call

proc.
call

syscall/return
network
comm.

syscall/return

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

Remote Procedure Call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
 return x + y;
}

client-side stub:

int Add(int x, int y) {
 alloc message buffer;
 mark as “add” call;
 store x,y in buffer;
 send message;
 receive response;
 unpack response;
 return response;
}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
 remove x,y from m;
 r = Add(x,y);
 allocate response buffer;
 store r in response;
 return response;
}

RPC runtime system:

receive message m;
response = Add_Stub(m);
send response to client;

Topics:
• interface
 description
• stubs
• stub
 generation
• parameter
 marshalling
• binding
• runtime

system
• error handling
• performance
• thread pools

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

RPC marshalling

• Marshalling is the packing of procedure parameters
into a message packet
– the RPC stubs call type-specific procedures to marshal or

unmarshal the parameters of an RPC
• the client stub marshals the parameters into a message
• the server stub unmarshals the parameters and uses them to

invoke the service’s procedure
– on return:

• the server stub marshals the return value
• the client stub unmarshals the return value, and returns them to

the client program

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

RPC binding

• Binding is the process of connecting the client to the
server
– the server, when it starts up, exports its interface

• identifies itself to a network name server
• tells RPC runtime that it is alive and ready to accept calls

– the client, before issuing any calls, imports (binds to) the
server

• RPC runtime uses the name server to find the location of the
server and establish a connection

• The import and export operations are explicit in the
server and client programs
– a slight breakdown in transparency

• more to come…

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

RPC transparency

• One goal of RPC is to be as transparent as possible
– make remote procedure calls look like local procedure calls
– we’ve seen that binding breaks this transparency

• What else breaks transparency?
– failures: remote nodes/networks can fail in more ways than

with local procedure calls
• network partition, server crash
• need extra support to handle failures
• server can fail independently from client

– “partial failure”: a big issue in distributed systems
– if an RPC fails, was it invoked on the server?

– performance: remote communication is inherently slower
than local communication

© 2013 Gribble, Lazowska, Levy, Zahorjan 17

RPC and thread pools

• What happens if two client threads (or client
programs) simultaneously invoke the same server
using RPC?
– ideally, two separate threads will run on the server
– so, the RPC runtime system on the server needs to spawn

or dispatch threads into server-side stubs when messages
arrive

• is there a limit on the number of threads?
• if so, does this change semantics?
• if not, what if 1,000,000 clients simultaneously RPC into the

same server?

	Slide 1
	What’s Interesting about RPC?
	Client/Server communication
	Messages
	Procedure calls
	Procedure call example
	Remote Procedure Call
	RPC issues
	RPC model
	RPC stubs
	Procedure Call
	Remote Procedure Call
	Remote Procedure Call
	RPC marshalling
	RPC binding
	RPC transparency
	RPC and thread pools

