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What’s Interesting about RPC?

• RPC = Remote Procedure Call
– the most common means for remote communication
– used both by operating systems and applications

• NFS is implemented as a set of RPCs
• HTTP is essentially RPC
• DCOM, CORBA, Java RMI, etc., are just RPC systems

• Allows you to communicate over a network with 
syntax and semantics very similar to local procedure 
call



© 2013 Gribble, Lazowska, Levy, Zahorjan 3

Client/Server communication

• The prevalent model for structuring distributed computation is 
the client/server paradigm
– a server is a program (or collection of programs) that provides a 

service to other programs
• e.g., file server, name server, web server, mail server …
• server/service may span multiple nodes (clusters)

– often, nodes are called servers too
– e,g., the web server runs on a Dell server computer

– a client is a program that uses the service
• the client first binds to the server

– locates it, establishes a network connection to it
• the client then sends requests (with data) to perform actions, and the 

server sends responses (with data)
– e.g., web browser sends a “GET” request, server responds with a web 

page

• TCP/IP is the transport, but what is the higher-level 
programming model?
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Messages

• Initially, people “hand-coded” messages to send 
requests and responses
– message is a stream of bytes – “op codes” and operands

• Lots of drawbacks
– need to worry about message format
– have to pack and unpack data from messages
– servers have to decode messages and dispatch to handlers
– messages are often asynchronous

• after sending one, what do you do until response comes back?
– messages aren’t a natural programming model
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Procedure calls

• Procedure calls are a natural way to structure 
multiple modules inside a single program
– every language supports procedure calls
– semantics are well-defined and well-understood
– programmers are used to them

• “Server” (called procedure) exports an API
– think about a file system / file server API:  open, close, read, 

write, sync, etc.

• “Client” (calling procedure) calls the server 
procedure’s API

• Linker binds the two together
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Procedure call example

• If the server were just a library, then “Add” would just 
be a local procedure call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
   return x + y;
}

Server API:

int Add(int x, int y;
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Remote Procedure Call

• Use procedure calls as the model for distributed 
(remote) communication
– traditional procedure call syntax and semantics
– have servers export a set of procedures that can be called 

by client programs
• similar to library API, class definitions, etc.

– clients do a local procedure call, as though they were 
directly linked with the server

• under the covers, the procedure call is converted into a 
message exchange with the server

• largely invisible to the programmer!
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• There are a bunch of hard issues:
– how do we make the “remote” part of RPC invisible to the 

programmer?
• and is that a good idea?

– what are the semantics of parameter passing?
• what if we try to pass by reference?

– how do we bind (locate/connect-to) servers?
– how do we handle heterogeneity?

• OS, language, architecture, …
– how do we make it go fast?

RPC issues
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RPC model

• A server defines the service interface using an 
interface definition language (IDL)
– the IDL specifies the names, parameters, and types for all 

client-callable server procedures
• example:  ASN.1 in the OSI reference model
• example:  Sun’s XDR (external data representation)

• A “stub compiler” reads the IDL declarations and 
produces two stub procedures for each server 
procedure
– the server programmer implements the service’s procedures 

and links them with the server-side stubs
– the client programmer implements the client program and 

links it with the client-side stubs
– the stubs manage all of the details of remote communication 

between client and server using the RPC runtime system
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RPC stubs

• A client-side stub is a procedure that looks to the client as if it 
were a callable server procedure
– it has the same API as the server’s implementation of the 

procedure
– a client-side stub is just called a “stub” in Java RMI

• A server-side stub looks like a caller to the server
– it looks like a hunk of code that invokes the server procedure
– a server-side stub is called a “skeleton” or “skel” in Java RMI

• The client program thinks it’s invoking the server
– but it’s calling into the client-side stub

• The server program thinks it’s called by the client
– but it’s really called by the server-side stub

• The stubs send messages to each other, via the runtime, to 
make the RPC happen transparently
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Procedure Call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
   return x + y;
}

Server API:

int Add(int x, int y;
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Remote Procedure Call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
   return x + y;
}

client-side stub:

int Add(int x, int y) {
  alloc message buffer;
  mark as “add” call;
  store x,y in buffer;
  send message;
  receive response;
  unpack response;
  return response;
}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
   remove x,y from m;
   r = Add(x,y);
   allocate response buffer;
   store r in response;
   return response;
}

RPC runtime system:

receive message m;
response = Add_Stub(m);
send response to client;

proc. 
call

proc. 
call

syscall/return 
network 
comm.

syscall/return 
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Remote Procedure Call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
   return x + y;
}

client-side stub:

int Add(int x, int y) {
  alloc message buffer;
  mark as “add” call;
  store x,y in buffer;
  send message;
  receive response;
  unpack response;
  return response;
}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
   remove x,y from m;
   r = Add(x,y);
   allocate response buffer;
   store r in response;
   return response;
}

RPC runtime system:

receive message m;
response = Add_Stub(m);
send response to client;

Topics:
•  interface
  description
•  stubs
•  stub
  generation
•  parameter
  marshalling
•  binding
•  runtime 

system
•  error handling
•  performance
•  thread pools
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RPC marshalling

• Marshalling is the packing of procedure parameters 
into a message packet
– the RPC stubs call type-specific procedures to marshal or 

unmarshal the parameters of an RPC
• the client stub marshals the parameters into a message
• the server stub unmarshals the parameters and uses them to 

invoke the service’s procedure
– on return:

• the server stub marshals the return value
• the client stub unmarshals the return value, and returns them to 

the client program



© 2013 Gribble, Lazowska, Levy, Zahorjan 15

RPC binding

• Binding is the process of connecting the client to the 
server
– the server, when it starts up, exports its interface

• identifies itself to a network name server
• tells RPC runtime that it is alive and ready to accept calls

– the client, before issuing any calls, imports (binds to) the 
server

• RPC runtime uses the name server to find the location of the 
server and establish a connection

• The import and export operations are explicit in the 
server and client programs
– a slight breakdown in transparency

• more to come…
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RPC transparency

• One goal of RPC is to be as transparent as possible
– make remote procedure calls look like local procedure calls
– we’ve seen that binding breaks this transparency

• What else breaks transparency?
– failures: remote nodes/networks can fail in more ways than 

with local procedure calls
• network partition, server crash
• need extra support to handle failures
• server can fail independently from client

– “partial failure”: a big issue in distributed systems
– if an RPC fails, was it invoked on the server?

– performance: remote communication is inherently slower 
than local communication
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RPC and thread pools

• What happens if two client threads (or client 
programs) simultaneously invoke the same server 
using RPC?
– ideally, two separate threads will run on the server
– so, the RPC runtime system on the server needs to spawn 

or dispatch threads into server-side stubs when messages 
arrive

• is there a limit on the number of threads?
• if so, does this change semantics?
• if not, what if 1,000,000 clients simultaneously RPC into the 

same server?
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