

CSE 451: Section 2 Handout
10/3/2019

Open File Table and Intro to Multi-Processing

Open File Table:

What does it mean for two entries in the process open file table to point at the same global open
file table entry?

Draw out the process and global open file table layout after the following c code:

int fd1 = open(“file.txt”, O_RDONLY);

int fd2 = open(“file.txt”, O_RDWR);

These are the first few lines of lab1test.c. What is this doing?

open(“console”, O_RDWR);

dup(0);

dup(0);

Linux supports more functions built on top of dup, dup2 is an example.
Take a look at the man pages for dup2 and discuss how you would implement it in xk.

CSE 451: Section 2 Handout
10/3/2019

Open File Table and Intro to Multi-Processing

Multi-Processing:

Take a look at struct proc in proc.h and the allocproc function in proc.c.
When a new process is created with fork() , what should the struct proc values be set
to?

Where will the new process start executing in user mode? (and where is this information
stored?)

To differentiate the new processes from the old process, we call the new process a child of the
parent old process. The return value of fork is different between the child and the parent. The
parent will return the child process id and the child will return 0.
How can we alter the return value of the fork function to simulate the situation above?

exit and wait are two important synchronization methods in xk. wait waits until a child has
exited and returns the process id of the child. exit exits the current process.

Why can a process not clean itself up on exit ?
If a process cannot clean itself, when are a process's data structures free’d?

