ZFS The Future Of File Systems

Introduction

What is a File System?

File systems are an integral part of any
operating systems with the capacity for long
term storage

present logical (abstract) view of files and
directories

facilitate efficient use of storage devices
Example-NTFS,XFS,ext2/3...etc

The Value of Data The Amount of
is Becoming Even Storage is Ever-
More Critical Increasing

Trouble with Existing File Systems?

Good for the time they were designed, but...

No Defense
Against Silent
Data Corruption

Any defect in
datapath can
corrupt data...

undetected

Difficult to
Administer-Need
a Volume Manager

Volumes, labels,
partitions,
provisioning

and lots of imits

Older/Slower
Data Management
Techniques

Fat locks, fixed
block size,
naive pre-fetch,

dirty region
logging

ZFS Design Principles

« Start with a new design around today's requirements

* Pooled storage
> Eliminate the notion of volumes
> Do for storage what virtual memory did for RAM

 End-to-end data integrity
> Historically considered too expensive.
> Now, data Is too valuable not to protect

* Transactional operation
> Maintain consistent on-disk format

> Reorder transactions for performance gains — big
performance win

Evolution of Disks and Volumes

* Intially, we had simple disks
* Abstraction of disks into volumes to meet requirements
* Industry grew around HW / SW volume management

Traditional Volumes

FS File File File
y stem system yst m

T

Zpool

« ZFS file systems are built on

ZFS

ZFS

ZFS

top of virtual storage pools

called zpools.

* A zpoolis constructed of
devices, real or logical.

* They are constructed by
combining block devices

using either mirroring or
RAID-Z.

FS/Volume Model vs. ZFS

Traditional Volumes ZFS Pooled Storage

Partitions/volumes exist in traditional file
Systemes.

With traditional volumes, storage is
fragmented and stranded. Hence storage
utilization is poor.

Since traditional file systems are
constrained to the size of the disk, so

growing file systems and volume is
difficult.

With ZFS’s common storage pool, there are
no partitions to manage.

File systems share all available storage in
the pool, thereby leading to excellent
storage utilization.

Size of zpools can be increased easily by
adding new devices to the pool. Moreover
file systems sharing available storage in a
pool, grow and shrink automatically as
users add/remove data.

Traditional Volumes ZFS Pooled Storage

Each file system has limited /O The combined I/O bandwidth of all the
bandwidth. devices in the storage pool is always
available to each file system.

Configuring a traditional file system with Creation of a similarly sized Solaris ZFS file
volumes involves extensive command line system takes a few seconds.

or graphical user interface interaction and

takes many hours to complete.

T [

I | I scalable

Data Integrity

ZFS Data Integrity Model

* Everything Is copy-on-write
> Never overwrite live data
> On-disk state always valid — no fsck

* Everything Is transactional
> Related changes succeed or fail as a whole
> No need for journaling

* Everything 1s checksummed
- > No silent corruptions
> No panics from bad metadata

* Enhanced data protection
> Mirrored pools, RAID-Z, disk scrubbing

Copy-on-Write and Transactional

Uber-block

l |
= ‘H‘-\-\._

“ o
- .H-'-\._ _--'-'-. -

Initial block tree Writes a copy of some changes

Original Pointers — - New Uber-block
New Puinters* - (—“

i

- A (= Al -
Copy-on-write of indirect blocks Rewrites the Uber-block

End-to-End Checksums

Disk Block Checksums
« Checksum stored with data block .
- Any self-consistent block will pass .

- Can't even detect stray writes

» Inherent FS/volume interface limitation

Only validates the media
+ Bitrot

Phantom writes

Misdirected reads and writes
DMA parity errors

Driver bugs

Accidental overwrite

=X X X X X

ZFS Checksum Trees

Checksum stored in parent block pointer

Fault isolation between data and checksum
Entire pool (block tree) is self-validating

Enabling technology:
ZFS stack integration

Validates the entire 1/0 path

Bit rot

Phantom writes

Misdirected reads and writes
DMA parity errors

Driver bugs

A N N N N N

Accidental overwrite

Traditional Mirroring

1. Application issues a read.
Mirror reads the first disk,
which has a corrupt block.

It can't tell.

Application

2. Volume manager passes
bad block up to filesystem.

If it's a metadata block, the
filesystem panics. If not...

Application

3. Filesystem returns bad
data to the application.

Application

Self-Healing data in ZFS

1. Application issues a read.
ZFS mirror tries the first disk.
Checksum reveals that the
block is corrupt on disk.

Application

2. ZFS tries the second disk.
Checksum indicates that the
block is good.

Application

3. ZFS returns good data
to the application and
repairs the damaged block.

Application

Mirroring

* The easiest way to get high
availability

* Half the size

* Higher read performance

Striping

* Higher performance
* Distributed across disks
* Work in parallel

Traditional RAID-4 and RAID-5

» Several data disks plus one parity disk
660666
- Fatal flaw: partial stripe writes

« Parity update requires read-modify-write (slow)

* Read old data and old parity (two synchronous disk reads)
* Compute new parity = new data * old data * old parity
* Write new data and new parity

« Suffers from write hole: n A n A n A ‘ A n = garbage

* Loss of power between data and parity writes will corrupt data
« Workaround: $$$ NVRAM in hardware (i.e., don't lose power!)

= Can't detect or correct silent data corruption

RAID-Z

e I e I e I

e I e I

b
) -) =) =) =) =) =
T T T T T T T T
ceay I cegr M cegr NN cegr NN cegr NN cegr M cegr NN cegr NN

l."——‘lf l."——‘lf l. L) — |, l. L) — |, l."——‘lf l.—" — lr l. L) — lr l. L — lr

Sun

microsystems

Sun

microsystems

RAID-Z

'\J | '\J | '\J | '\J | '\J | '\J | '\J | '\J |
"/ = "/ = "/ = "/ = "/ = "/ = "/ = "/ =

T T T T T T T T
ceay I cegr NN cegr NN cegr NN cegr NN cegr NN cegr NN cegr NN

l."——‘lf l."——‘lf l.] — |, l.] — |, l."——‘lf l.—" — lr l. o — lr l. o — lr

RAID-Z Protection

RAID-5 and More

» /FS provides better than RAID-5 availability

> Copy-on-write approach solves historical problems

» Striping uses dynamic widths
> Each logical block is its own stripe

* All writes are full-stripe writes
> Eliminates read-modify-write (So it's fast!)

* Eliminates RAID-5 “write hole”
> No need for NVRAM

Easier
Administration

Disk Scrubbing

* Uses checksums to verify the integrity
of all the data

 Traverses metadata to read every
copy of every block

+ Finds latent errors while they're still correctable

* |t's like ECC memory scrubbing —
but for disks

* Provides fast and reliable re-silvering of mirrors

Resilvering of mirrors

Resilvering (AKA resyncing, rebuilding, or
reconstructing) is the process of repairing a damaged
device using the contents of healthy devices.

For a mirror, resilvering can be as simple as a whole-disk
copy. For RAID-5 it's only slightly more complicated:
instead of copying one disk to another, all of the other
disks in the RAID-5 stripe must be XORed together.

Resilvering of mirrors

The main advantages of this feature are as follows:

ZFS only resilvers the minimum amount of necessary data.

The entire disk can be resilvered in a matter of minutes or seconds,

Resilvering is interruptible and safe. If the system loses power or is
rebooted, the resilvering process resumes exactly where it left off,
without any need for manual intervention.

Transactional pruning. If a disk suffers a transient outage, it's not
necessary to resilver the entire disk -- only the parts that have
changed.

Live blocks only. ZFS doesn't waste time and |/O bandwidth
copying free disk blocks because they're not part of the storage
pool's block tree.

Resilvering of mirrors

Types of resilvering

Top-down resilvering-the very first thing ZFS resilvers is
the uberblock and the disk labels. Then it resilvers the

pool-wide metadata; then each file system's metadata;
and so on down the tree.

Priority-based resilvering-Not yet implemented in ZFS.

Create ZFS Pools

Create a ZFS pool
zpool create tank cOd1 c1d0 c1d1

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 23.8G 91K 23.8G 0% ONLINE -

Destroy a pool
zpool destroy tank
Create a mirrored pool

zpool create mirror c1d0 c1d1
“ Mirror between disk c1d0 and disk c1d1
“ Available storage is the same as if you used only one of these disks
= If disk sizes differ, the smaller size will be your storage size

ZFS Snapshots

* View of a file system as it was at a particular point in time.
* A snapshot initially consumes no disk space, but it starts to
consume disk space as the files it references get modified or
deleted.

* Constant time operation.

snapshot Uber-block E New Uber-block

ZFS Snapshots

* Independent of the size of the file system that it references to.

* Presence of snapshots doesn’t slow down any operation.

* Snapshots allow us to take a full back-up of all files/directories referenced by

the snapshot.

Date Modified
v [Backups.backupdb Sep 22, 2007, 8:44 PM
v [Leopard Oct 16, 2007, 11:33 PM
» [2007-09-22-114900 Sep 22, 2007, 11:49 AM
» [2007-10-08-110154 Oct 8, 2007, 11:01 AM
» [2007-10-10-080704 Oct 10, 2007, 8:07 AM
» [2007-10-12-192202 Oct 12, 2007, 7:22 PM
» [2007-10-13-202339 Oct 13, 2007, 8:23 PM
» [2007-10-14-171203 Oct 14, 2007, 5:12 PM
» [2007-10-16-081151 Oct 16, 2007, 8:11 AM
» [2007-10-16-081523 Oct 16, 2007, B:15 AM
v [2007-10-16-204240 Oct 16, 2007, 8:42 PM
» B Leopard Demo Oct 5, 2007, 2:54 PM
v [2007-10-16-223321 Oct 16, 2007, 10:33 PM
| E Leopard Demao Oct 5, 2007, 2:54 PM
v [2007-10-16-233319 Oct 16, 2007, 11:33 PM
» B Leopard Demo Oct 5, 2007, 2:54 PM
Al Latest Oct 16, 2007, 11:33 PM

A

ZFS Clones

- A clone is a writable volume or file system whose initial contents are the
same as the dataset from which it was created.

* Constant time operation.

* ZFS clones do not occupy additional disk space when they are created.

* Clones can only be created from a snapshot.

* An implicit dependency is created between the clone and the snapshot.

Data Compression

* Reduces the amount of disk space used

* Reduces the amount of data transferred to disk -
Increasing data throughput

Data Compression

Unparalleled Scalability

The limitations of ZFS are designed to be so large that they will not
be encountered in practice for some time. Some theoretical
limitations in ZFS are:

Number of snapshots of any file system - 264

Number of entries in any individual directory - 248

Maximum size of a file system - 264 bytes

Maximum size of a single file - 254 bytes

Maximum size of any attribute - 264 bytes

Maximum size of any zpool - 278 bytes

Number of attributes of a file - 2°°

Number of files in a directory - 2°°

Number of devices in any zpool - 264

Number of zpools in a system - 264

Number of file systems in a zpool - 24

Traditional Disk Storage Administration

But with ZFS....

Copy-on-Write Design
Multiple Block Sizes
Pipelined I/O

Dynamic Striping

Architected for Speed

Multiple Block Size

No single value works well with all types of files

Large blocks increase bandwidth but reduce metadata and can
lead to wasted space

Small blocks save space for smaller files, but increase I/O
operations on larger ones

FSBs are the basic unit of ZFS datasets, of which checksums are
maintained

Files that are less than the record size are written as a single
file system block (FSB) of variable size in multiples of disk sectors
(512B)

Files that are larger than the record size are stored in multiple
FSBs equal to record size

Pipelined I/O

Reorders writes to be as sequential as

possible

App #1 writes: [B

App #2 writes: [l

If left in original order, we
waste a lot of time waiting
for head and platter
positioning:

Move Spin Move
Head [ead Head [l

i\

Move Move

Head . Head

Pipelined I/O

Reorders writes to be as sequential as
possible

App #1 writes: [B

App #2 writes: [l

Pipelining lets us examine
writes as a group and
optimize order:

Move Move
Head :. Head -

Dynamic Striping

* Load distribution across devices

* Factors determining block allocation
include:

= Capacity
" Latency & bandwidth
“ Device health

Dynamic Striping

Writes striped across both New data striped across three mirrors.

mirrors. No migration of existing data.

Reads occur wherever data was Copy-on-write reallocates data over time,

written. gradually spreading it across all three
mirrors.

zpool create tank \
mirror c1t0d0 c1t1dO0 \
mirror c2t0d0 c2t1d0

zpool add tank \
mirror ¢3t0d0 c3t1d0

Cost and Source Code

ZFS is FREE*

$ usDo
€ EURO
~ £ GBPO
- kr sEko
¥ YENO
TC YUANO

opensolaris

» /FS source code Is
included in Open Solaris

> A7 ZFS patents
added to CDDL
patent commons

otevfeny 94a| >gia0 avolkT WY libre

o uppen NINO F K
F;ﬁ —_ Op.e n m:nﬁ, libero pyilt

ﬁi@msrﬂuuml_ o ,
47 orkpbrbm 26k o°8 * livre offen

Disadvantages

.,.

* ZFS is still not widely used yet.

* RAIDZ2 has a high 10 overhead- ZFS is slow when it comes to
external USB drives

* Higher power consumption

* No encryption support

* ZFS lacks a bad sector relocation plan.

* High CPU usage

And for the Future

More
. Flexible

More
Secure

More
Reliable

* Pool resize and device removal
» Booting / root file system
* Integration with Solaris Containers

* Encryption
» Secure delete — overwriting for “absolute” deletion

* Fault Management Architecture Integration
* Hot spares
» DTrace providers

	Slide Number 1
	Slide Number 2
	What is a File System?
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

