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This Module

• We have some slides I’ve built to give an overview
• We also have more details in:

• an early overview paper
• a somewhat more recent, commercial Powerpoint presentation

• Both are linked from the course calendar

• If you’re really interested, there is much more online
• ZFS on-disk layout paper (2006)
• ZFS data integrity study (2010)
• ZFS performance studies (many)



Background

• We’ve looked at
• FAT/NTFS/FFS – how to represent file system directory tree on disk; how to 

choose which blocks to allocate for metata and for file data
• journaling – how to make the file system resilient to crashes
• log structured FS – how to make all writes big, sequential writes
• RAID – how to take advantage of “bytes are cheap” to obtain better 

performance, and how to deal with the elevated disk failure rate that comes 
from using more disks

• ZFS comes later (around 2003)
• It is motivated by the difficulty of administering a system, especially 

one that has many disks and whose storage capacity may be changing



ZFS
• Suppose you have a system with a single disk and it starts to fill.  

What do you do?
• Buy a new disk twice as big, install the OS and apps on it, then copy the user 

files from the old disk to the new one?
• Buy another disk the same size, keep it as is, and mount the new disk 

somewhere handy in the existing file system name space?
• Do that but move some existing data files to the new disk?

• What happens when the I run out of space again?

• One point of ZFS is  that the boundaries of physical disks aren’t 
sufficiently hidden by existing file systems



Logical Volume Managers (LVMs)
• Physical volumes: disks/partitions
• Logical volume groups: represent 

one or more physical volumes, 
with boundaries removed

• Logical volumes: partitions 
created in a logical volume group
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LVMs

• LVMs can be in hardware (disk controllers) or software
• They can implement various RAID levels
• They can implement JBOD (Just a Bunch of Disks)

• Aggregate storage blocks from many physical devices into one logical volume
• No added error resilience

• RAIDs typically require many disks of the same capacity (and maybe 
type)

• JBOD doesn’t care what what size they are 



LVMs
• Okay, that’s appealing for dealing with physical device boundaries
• Suppose you have formatted the logical volume for some file system 

(so superblock, free inode map, and inode arrays have been 
initialized and then used)

• Now you want to add storage to the system and then make the 
logical volume bigger

• Can that work?  Will the file system data structures on the logical volume be 
able to use the additional disk?

• Now you want to move space between one logical volume and 
another.

• Can that work?  Can you shrink a volume that holds files?

• One goal of ZFS is to address the difficult interplay among the 
physical devices, the logical devices, and the file systems



Error Resilience

• The only errors we have looked at are:
• system crashes:  journaling
• disk dies:  redundancy (RAID)

• What about:
• disk has an undetected read error (returns incorrect data)?
• disk has an undetected write error?
• disk writes wrong block (controller or disk error)?
• disk reads wrong block?
• “write holes” on traditional RAIDs

• RAID needs to write a stripe plus parity block, but doesn’t perform those updates 
atomically...



ZFS Software Structure



ZFS Disk Management

These operations are supported in the SPA.
ZFS also implements “RAID-Z,” which is RAID-5-like but  designed to be resilient to failures during write of a stripe.



ZFS error handling
• A huge file system is likely to experience errors
• “Errors” aren’t just crashes
• Errors can be related to the disk:

• disk failures
• disk read/write bit errors
• larger disk errors (e.g., read/write wrong block)

• You can’t fsck a huge file system
• ZFS amortizes the overhead of dealing with errors over all operation

• extra effort is taken to detect errors “immediately” so that they’re small-grained 
and can be fixed

• Among other things, it supports a kind of mirroring at the object level (rather 
than the disk level  -- it does disk level as well...)

• Note: there is current interest in protecting against errors that occur in the CPU – both hardware errors 
(e.g., memory bit errors) and software errors (plain old bugs).



ZFS Checksums

• Every block is checksummed
• The checksum is kept in the parent block, the one holding a pointer to the block

• all blocks have a parent block except the “uberblock”(s)
• the uberblock stores its own checksum

• checksums are verified whenever the block is read and recalculated whenever they’re 
written

• Note: disk devices do their own (sector-level) checksumming
• this is on top of that

• Note: despite disk devices doing their own checksumming, undetected errors are 
observed in the field

• When a checksum error is detected, ZFS can automatically repair using one of the 
copies



ZFS Block Pointer 

• Pointer can refer to up to 3 
copies of the block

• Block size isn’t fixed

• Blocks can be stored compressed

• PSIZE is physical size, LSIZE is
logical size (ASIZE includes 
indexing overhead

• checkum[0-3] are copies of the 
block’s checksum value

• Blocks have a type (e.g., to 
indicate whether it’s a data block 
or an indirect block)



ZFS Crash Resilience
• ZFS guarantees that the disk always contains a coherent version of 

the file system
• All disk writes are transactional

• Each write is associated with a transaction group
• A transaction group either makes it to disk in its entirety or it’s as if it never 

existed

• However, it doesn’t normally do journaling
• So no need to process a log on reboot

• Instead, it periodically does write-back of transactions
• Mostly they succeed, but we still need a mechanism for if they fail



ZFS Journaling

• ZFS journals in two cases

• If an app wants to synch right now, its update transaction is written 
to a log on stable storage

• But its transaction is also maintained in the write-back cache
• Usually the transaction goes to disk when periodic update occurs and then 

the log entry unlinked
• (So, mostly the log is written by never read)

• A “Delete queue”
• Written at the ZPL level
• Records the intention to delete file/directories



ZFS Crash Resilience

• If ZFS isn’t doing logging, how does it get transactional updates?

• What it does feels similar to the RCU (read-copy-update) lock we saw 
earlier

• Copy-on-write updates of blocks
• A single (hopefully) atomic operation installs a new version of the file system

• The old version can be garbage collected, if  you want
• The old version can be maintained, as a “snapshot”



ZFS Crash Resilience



ZFS Snapshots

The snapshot is basically a diff, so its size is related to the number of bytes changed, 
not the size of the entire file system.



vdev Label and Uber-blocks

• Label updates first write L0 and L2 and then write L1 and L3
• Uber-block updates are written round-robin across disks
• On (re)boot, the most recently written Uber-block is made current

Layout of entire vdev

Pool attributes
128 1KB Uber-blocks



ZFS: File System Imposed Size Limitations

File System Max File Size Max Volume Size Max # Files

FAT32 4GB 16TB -

NTFS 16EB 16EB 232

ext4 16TB 1EB 232

ZFS 16EB 278B 2128

1EB = 1,000,000 TB

ZFS implementors wanted to accommodate exponential 
growth in storage capacity...



ZFS Summary



More Information

• The paper linked from the course calendar
• The slide deck linked from the course calendar
• The Internet
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