
ZFS

The Zettabyte File System

Module 14.0

This Module

• We have some slides I’ve built to give an overview
• We also have more details in:

• an early overview paper
• a somewhat more recent, commercial Powerpoint presentation

• Both are linked from the course calendar

• If you’re really interested, there is much more online
• ZFS on-disk layout paper (2006)
• ZFS data integrity study (2010)
• ZFS performance studies (many)

Background

• We’ve looked at
• FAT/NTFS/FFS – how to represent file system directory tree on disk; how to

choose which blocks to allocate for metata and for file data
• journaling – how to make the file system resilient to crashes
• log structured FS – how to make all writes big, sequential writes
• RAID – how to take advantage of “bytes are cheap” to obtain better

performance, and how to deal with the elevated disk failure rate that comes
from using more disks

• ZFS comes later (around 2003)
• It is motivated by the difficulty of administering a system, especially

one that has many disks and whose storage capacity may be changing

ZFS
• Suppose you have a system with a single disk and it starts to fill.

What do you do?
• Buy a new disk twice as big, install the OS and apps on it, then copy the user

files from the old disk to the new one?
• Buy another disk the same size, keep it as is, and mount the new disk

somewhere handy in the existing file system name space?
• Do that but move some existing data files to the new disk?

• What happens when the I run out of space again?

• One point of ZFS is that the boundaries of physical disks aren’t
sufficiently hidden by existing file systems

Logical Volume Managers (LVMs)
• Physical volumes: disks/partitions
• Logical volume groups: represent

one or more physical volumes,
with boundaries removed

• Logical volumes: partitions
created in a logical volume group

File
System

LVM

Logical Block Address (LBA)

Logical
volumes

Physical volumes

Logical volume group

LVMs

• LVMs can be in hardware (disk controllers) or software
• They can implement various RAID levels
• They can implement JBOD (Just a Bunch of Disks)

• Aggregate storage blocks from many physical devices into one logical volume
• No added error resilience

• RAIDs typically require many disks of the same capacity (and maybe
type)

• JBOD doesn’t care what what size they are

LVMs
• Okay, that’s appealing for dealing with physical device boundaries
• Suppose you have formatted the logical volume for some file system

(so superblock, free inode map, and inode arrays have been
initialized and then used)

• Now you want to add storage to the system and then make the
logical volume bigger

• Can that work? Will the file system data structures on the logical volume be
able to use the additional disk?

• Now you want to move space between one logical volume and
another.

• Can that work? Can you shrink a volume that holds files?

• One goal of ZFS is to address the difficult interplay among the
physical devices, the logical devices, and the file systems

Error Resilience

• The only errors we have looked at are:
• system crashes: journaling
• disk dies: redundancy (RAID)

• What about:
• disk has an undetected read error (returns incorrect data)?
• disk has an undetected write error?
• disk writes wrong block (controller or disk error)?
• disk reads wrong block?
• “write holes” on traditional RAIDs

• RAID needs to write a stripe plus parity block, but doesn’t perform those updates
atomically...

ZFS Software Structure

ZFS Disk Management

These operations are supported in the SPA.
ZFS also implements “RAID-Z,” which is RAID-5-like but designed to be resilient to failures during write of a stripe.

ZFS error handling
• A huge file system is likely to experience errors
• “Errors” aren’t just crashes
• Errors can be related to the disk:

• disk failures
• disk read/write bit errors
• larger disk errors (e.g., read/write wrong block)

• You can’t fsck a huge file system
• ZFS amortizes the overhead of dealing with errors over all operation

• extra effort is taken to detect errors “immediately” so that they’re small-grained
and can be fixed

• Among other things, it supports a kind of mirroring at the object level (rather
than the disk level -- it does disk level as well...)

• Note: there is current interest in protecting against errors that occur in the CPU – both hardware errors
(e.g., memory bit errors) and software errors (plain old bugs).

ZFS Checksums

• Every block is checksummed
• The checksum is kept in the parent block, the one holding a pointer to the block

• all blocks have a parent block except the “uberblock”(s)
• the uberblock stores its own checksum

• checksums are verified whenever the block is read and recalculated whenever they’re
written

• Note: disk devices do their own (sector-level) checksumming
• this is on top of that

• Note: despite disk devices doing their own checksumming, undetected errors are
observed in the field

• When a checksum error is detected, ZFS can automatically repair using one of the
copies

ZFS Block Pointer

• Pointer can refer to up to 3
copies of the block

• Block size isn’t fixed

• Blocks can be stored compressed

• PSIZE is physical size, LSIZE is
logical size (ASIZE includes
indexing overhead

• checkum[0-3] are copies of the
block’s checksum value

• Blocks have a type (e.g., to
indicate whether it’s a data block
or an indirect block)

ZFS Crash Resilience
• ZFS guarantees that the disk always contains a coherent version of

the file system
• All disk writes are transactional

• Each write is associated with a transaction group
• A transaction group either makes it to disk in its entirety or it’s as if it never

existed

• However, it doesn’t normally do journaling
• So no need to process a log on reboot

• Instead, it periodically does write-back of transactions
• Mostly they succeed, but we still need a mechanism for if they fail

ZFS Journaling

• ZFS journals in two cases

• If an app wants to synch right now, its update transaction is written
to a log on stable storage

• But its transaction is also maintained in the write-back cache
• Usually the transaction goes to disk when periodic update occurs and then

the log entry unlinked
• (So, mostly the log is written by never read)

• A “Delete queue”
• Written at the ZPL level
• Records the intention to delete file/directories

ZFS Crash Resilience

• If ZFS isn’t doing logging, how does it get transactional updates?

• What it does feels similar to the RCU (read-copy-update) lock we saw
earlier

• Copy-on-write updates of blocks
• A single (hopefully) atomic operation installs a new version of the file system

• The old version can be garbage collected, if you want
• The old version can be maintained, as a “snapshot”

ZFS Crash Resilience

ZFS Snapshots

The snapshot is basically a diff, so its size is related to the number of bytes changed,
not the size of the entire file system.

vdev Label and Uber-blocks

• Label updates first write L0 and L2 and then write L1 and L3
• Uber-block updates are written round-robin across disks
• On (re)boot, the most recently written Uber-block is made current

Layout of entire vdev

Pool attributes
128 1KB Uber-blocks

ZFS: File System Imposed Size Limitations

File System Max File Size Max Volume Size Max # Files

FAT32 4GB 16TB -

NTFS 16EB 16EB 232

ext4 16TB 1EB 232

ZFS 16EB 278B 2128

1EB = 1,000,000 TB

ZFS implementors wanted to accommodate exponential
growth in storage capacity...

ZFS Summary

More Information

• The paper linked from the course calendar
• The slide deck linked from the course calendar
• The Internet

	���ZFS�The Zettabyte File System��Module 14.0
	This Module
	Background
	ZFS
	Logical Volume Managers (LVMs)
	LVMs
	LVMs
	Error Resilience
	ZFS Software Structure
	ZFS Disk Management
	ZFS error handling
	ZFS Checksums
	ZFS Block Pointer
	ZFS Crash Resilience
	ZFS Journaling
	ZFS Crash Resilience
	ZFS Crash Resilience
	ZFS Snapshots
	vdev Label and Uber-blocks
	ZFS: File System Imposed Size Limitations
	ZFS Summary
	More Information

