
CSE 451
Storage Systems

Module 9

Main Points

• File systems
• Useful abstractions on top of physical devices

• Storage hardware characteristics
• Disks and flash memory

• File system usage patterns

File Systems

• Abstraction on top of persistent storage
• Magnetic (spinning) disk
• SSD (Solid State Disk)
• Flash drives (i.e., easily portable)

• Hardware devices provide
• Storage that (usually) survives across machine crashes
• Block level (random) access
• Large capacity at low cost

• relative to RAM
• Relatively slow performance

• Magnetic disk read takes 10-20M processor instructions

File System as Illusionist:
Hide Limitations of Physical Storage

• Persistence of data
• Even if machine is turned off
• Even if crash happens during an update
• Even if disk block becomes corrupted
• Even if flash memory wears out
• Even if building burns down
• Even if an earthquake eradicates a large geographic area

• Naming
• Named data instead of disk block numbers
• Hiearachical names instead of flat names
• Directories instead of flat storage
• Byte addressable data even though devices are block-oriented

• Performance
• The fastest IO op is the one you don’t have to do

• Cached data
• Data placement and data structure organization

• Controlled access to shared data

File System Abstraction
• File system

• Persistent, named data
• Hierarchical organization (directories, subdirectories)
• Access control on data

• File
• Named collection of data
• Linear sequence of bytes (or a set of sequences)
• Metadata (e.g., owner, permissions)
• Read/write interface or memory mapped

• Crash and storage error tolerance
• Operating system crashes (and disk errors) leave file system in a valid state
• Some individual files may not be so lucky...

• Performance
• Achieve close to the hardware limit in the average case

Storage Devices

• Magnetic disks
• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block level random access
• Slow performance for random access
• Better performance for streaming (sequential on physical device) access

• Solid state disk
• Storage that rarely becomes corrupted
• Capacity at intermediate cost (3x disk)
• Lower power consumption (especially when idle)
• Block level random access
• Much better performance than spinning drives

• Good performance for reads; not as good for random writes

Magnetic (Spinning) Disk

Spinning Disk Tracks

• ~ 1 micron wide
• Wavelength of light is ~ 0.5 micron
• Resolution of human eye: 50 microns
• 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
• Reduces likelihood neighboring tracks are corrupted during writes (still a small

non-zero chance)

• Track length varies across disk
• Outside: More sectors per track, higher bandwidth
• Disk is organized into regions of tracks with same # of sectors/track
• Only outer half of radius is used

• Most of the disk area in the outer regions of the disk

Sectors

Sectors contain sophisticated error correcting codes
• Disk head magnet has a field wider than track
• Hide corruptions due to neighboring track writes

• “Sector sparing”
• Cheaper/faster disk that mostly works plus mechanism to deal with errors

• Why make it perfect when I can make it 99% perfect for 80% of the cost and then masks
errors in software?

• Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
• Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
• Sector numbers offset from one track to the next, to allow for disk head

movement for sequential ops

Disk Performance

Latency = time from start of operation to completion of operation

Disk Latency = Seek Time + Rotation Time + Transfer Time

Seek Time: time to move disk arm over track (1-20ms)
Fine-grained position adjustment necessary for head to “settle”
Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk head
Disk rotation: 4 – 15ms (depending on speed/price of disk)
“On average”, need to wait only half a rotation

Transfer Time: time to transfer data onto/off the disk
Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
Host transfer rate dependent on I/O connector (USB, SATA, …)

Seagate Barracuda 2.5” Disk (2019)

Capacity 1TB

Bytes per Sector (logical/physical) 512/4096

Interface SATA 6Gb/s

Data Transfer Rate Up to 160 MB/sec

Cache 128 MB

Rotation speed 7200 RPM

Nonrecoverable read errors per bits read,
Max

1 per 10E14

Startup current (+5V, A) 1.0

R/W Power, Average (W) 1.9/1.7

Idle Power, Average (W) 0.7

Spinning Disk Performance: Random / FIFO

• Q: How long to complete 500 random disk reads in FIFO order?
• Seek: average (assumed) 10.5 msec
• Rotation: average 4.15 msec
• Transfer: 5-10 usec

• A: 500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

Spinning Disk Performance: Sequential

• Q: How long to complete 500 sequential disk reads?
• Seek Time: 10.5 ms (to reach first sector)
• Rotation Time: 4.15 ms (to reach first sector)
• Transfer Time:

(500 sectors) * (512 bytes / sector) / (128MB/sec) = 2ms

• Total: 10.5 + 4.15 + 2 = 16.7 ms
Might need an extra head or track switch (+1ms)
Track buffer may allow some sectors to be read off disk out of order (-2ms)

Spinning Disk Scheduling

• What does “disk scheduling” mean?
• The order in which disk I/O requests are served

• Why does it matter?
• Seek and latency depend on location of I/O op data relative to R/W head

• How much can it matter?
• See the previous slides!

• Who does it?
• Could be OS
• Could be the device itself

• Command queueing

Spinning Disk Scheduling

• FIFO
• Schedule disk operations in order they arrive
• Downsides?

Spinning Disk Scheduling

• FIFO
• Schedule disk operations in order they arrive
• Downsides?

• SSTF (Shortest seek time first)
• Not optimal!

• (That it’s not optimal might seem counter-intuitive if we had done CPU scheduling
already, but we postponed that to get to disks, because of the project)

• Suppose one request toward outer edge and a “ladder” of requests toward inner
request with each next one always closer than the outer edge request

• Besides not being optimal, other downsides?

Spinning Disk Scheduling

• SCAN: move disk arm in one
direction, until all requests
satisfied, then reverse direction

• Also called “elevator scheduling”

Con: discriminates against
blocks at inner and outer edges

Spinning Disk Scheduling

• CSCAN: move disk arm in one
direction, until all requests
satisfied, then start again
from farthest request

Con: long seek in every
schedule; considers only seek

Spinning Disk Scheduling

• R-CSCAN: CSCAN but take
into account that short track
switch is < rotational delay

Spinning Disk Questions

• How long to complete 500 random disk reads in a well chosen order?
• Disk seek: 1ms (most will be short)
• Rotation: 4.15ms
• Transfer: 5-10usec

• Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
• Would be a bit shorter with R-CSCAN
• vs. 7.3 seconds if FIFO order

• Why would reads be “random”?
• How could you try to reduce the likelihood that they were random?

Spinning Disk Questions

• How long to read all of the bytes off of a disk?
• Disk capacity: 1TB
• Disk bandwidth: 54-128MB/s

• Transfer time =
Disk capacity / average disk bandwidth
~ 10,500 seconds (3 hours)

Solid State Disks (SSDs) – Flash Memory

• No moving parts
• No seek time, no latency time, no limitation on transfer rate due to limited

rotation time
• (That last one was a bit misleading. Why?)

• More “penalty-free random access” than spinning disks

• Less “penalty-free random access” than main memory

Seagate Firecuda M.2 Disk (2019)

Capacity 1TB

Interface PCIe Gen4 x4, NVMe 1.3

NAND Flash Memory 3D TLC

Sequential Read (Max), 128KB 5000 MB/s

Sequential Write (Max), 128KB 4400 MB/s

Random Read (Max, QD32) 760,000 IOPS

Random Write (Max, QD32) 700,000 IOPS

Active Power, Average 5.6 W

Idle Power, Average 15 mW

Lower Power mode 2 mW

Total Bytes Written (before failure) 1800 TB

Flash Memory
(SSD performance is increasing quickly, so distrust the specific values here!)

• Read/write pages (2-4KB)
• 50-100 usec

• Must erase a page that has already been written to before writing it again
• no update in place
• must erase first, then write

• Erasure is performed only on large erasure blocks
• Erasure block: 128 – 512 KB
• Many pages

• Erasure is slow
• Several milliseconds

• When you want to update a logical page, must move it

Flash Translation Layer

• Support for moving pages is provided by the disk device
• It’s software (ok, firmware), but it runs on the disk, not in the OS on the CPU

• Disk firmware maps logical page # (used by OS) to a physical location
• The device presents a name space, page numbers, for the OS to use, but they

are not physical addresses on the device

• Transparent to the device user (i.e., the OS)
• What’s great about that?!
• What’s not great about that?!

(Spinning disks map as well)

Flash Translation Layer: Garbage Collection

• Improve performance by garbage collecting pages and cleaning
blocks

• Pack in-use pages into (full) erasure blocks
• Creates erasure blocks with no in-use pages as a result

• Pre-clean (erase) those now empty blocks
• More efficient if pages stored at same time are deleted at same time (e.g.,

keep blocks of a file together)

• Who’s doing this, the disk or the OS?

File System – SSD

• How does SSD device know which pages are live?
• To the device, pages are just pages
• Only the file system knows which pages are in use

• When a file is deleted, there is no disk operation on its data blocks
• But the device is doing erasures, and must understand which blocks are live

to do so efficiently

• TRIM command
• File system tells device when blocks are no longer in use

Flash Translation Layer: Wear Leveling

• Each physical page on an SSD can be written only a limited number of
times before it becomes unreliable

• Wear-levelling
• Remap pages to spread wear evenly
• Unmap pages that no longer work (like sector sparing)

• including pages that never worked

Storage Technology Comparison

• SDD has interface identical to HDD
• SATA bus

• NVMe device has internals like SDD but incompatible interface
• faster...

HDD vs. SDD and Transfer Size

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd-speed.html

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd-speed.html

Storage Performance Summary

• Yes, newer is faster

• If you make some component fast enough, some other component
becomes the bottleneck

• Large, sequential transfers are advantageous on all device technologies
• On spinning disks, amortize seek and latency overheads
• On SSDs, for reasons explained in a moment

File System Workloads

• A file system decides how to use disk storage to maintain information
about:

• file contents (data)
• file names (and other meta-data)
• directories

• One goal of the file system is performance
• Remember “optimize the common case”

• What is the common case?
• If we knew, it might help us design an efficient file system

File System Decisions and Workloads

• Big blocks or little blocks?
• Fragmentation
• Amount of indexing information needed to list blocks in a file

• Which blocks on same track, which on different?
(Which blocks in a single erasure block?)

• Block indexing structures?
• Access time vs. space overhead

• Optimize for reading or for writing?

File System Workload

• File sizes (static measure)
• Are most files small or large?
• Which accounts for more total storage: small or large files?

File System Workload

• File sizes
• Are most files small or large?

• SMALL
• Which accounts for more total storage: small or large files?

• LARGE

File System Workload

• File access (dynamic measure)
• Are most IO operations on small files or large ones?

• Counts IO ops
• Which accounts for more total I/O bytes: small or large files?

• Counts bytes transferred

File System Workload

• File access
• Are most IO operations on small files or large ones?

• SMALL
• Which accounts for more total I/O bytes: small or large files?

• LARGE

File System Workload

• How are files used?
• Most files are read/written sequentially
• Some files are read/written randomly

• Ex: database files, swap files

• Some files have a known size at creation
• Some files start small and grow over time

• Ex: program stdout, system logs

File System Design
• For small files:

• Small blocks for storage efficiency
• minimize internal fragmentation

• Concurrent ops more efficient than sequential
• On spinning disk, files used together should be stored together

• For large files:
• Storage efficient (large blocks)
• Contiguous allocation for sequential access
• Efficient lookup for random access

• E.g., don’t use a linked list of blocks on disk!

• May not know at file creation
• Whether file will end up small or large
• Whether file is persistent or temporary
• Whether file will be used sequentially or randomly

File System Abstraction

• Path
• String that uniquely identifies file or directory
• Ex: /cse/www/education/courses/cse451/20sp

• Links
• Hard link: link from name to file metadata
• Soft link: link from one name to an alternate name

• Directory
• Group of named files, including subdirectories
• Maps from file name to file metadata location

• inode number, in xk (and many other systems)

• Mount
• Mapping from name in one file system to root of another

UNIX File System API

• create, link, unlink, createdir, rmdir
• Create file, link to file, remove link
• Create directory, remove directory

• open, close, read, write, seek
• Open/close a file for reading/writing
• Seek resets current position

• fsync
• File modifications can be cached in memory
• fsync forces modifications to disk (like a memory barrier)
• Note: modifications include updated metadata

File System Interface

• UNIX file open is a Swiss Army knife:
• Open the file, return file descriptor
• Options:

• if file doesn’t exist, return an error
• If file doesn’t exist, create file and open it
• If file does exist, return an error
• If file does exist, open file
• If file exists but isn’t empty, nix it then open
• If file exists but isn’t empty, return an error
• …

Interface Design Question

• Why not provide separate syscalls for open/create/exists?
• Would be more modular!

if (!exists(name))
create(name); // can create fail?

fd = open(name); // does the file exist?

Summary

• Storage systems provide persistent storage
• File systems abstract persistent storage to make it easier to use
• Like all system software, file systems strive to achieve convenient

functionality while allowing performance close to what could be
achieved implementing on top of raw hardware

• “Optimize the common case” requires that we know what the
common case is

• “Optimize the common case” requires that we know relative cost of
operations on the hardware device

	CSE 451�Storage Systems��Module 9
	Main Points
	File Systems
	File System as Illusionist:�Hide Limitations of Physical Storage
	File System Abstraction
	Storage Devices
	Magnetic (Spinning) Disk
	Slide Number 8
	Spinning Disk Tracks
	Sectors
	Disk Performance
	Seagate Barracuda 2.5” Disk (2019)
	Spinning Disk Performance: Random / FIFO
	Spinning Disk Performance: Sequential
	Spinning Disk Scheduling
	Spinning Disk Scheduling
	Spinning Disk Scheduling
	Spinning Disk Scheduling
	Spinning Disk Scheduling
	Spinning Disk Scheduling
	Spinning Disk Questions
	Spinning Disk Questions
	Solid State Disks (SSDs) – Flash Memory
	Seagate Firecuda M.2 Disk (2019)
	Flash Memory
	Flash Translation Layer
	Flash Translation Layer: Garbage Collection
	File System – SSD
	Flash Translation Layer: Wear Leveling
	Storage Technology Comparison
	HDD vs. SDD and Transfer Size
	Slide Number 32
	Storage Performance Summary
	File System Workloads
	File System Decisions and Workloads
	File System Workload
	File System Workload
	File System Workload
	File System Workload
	File System Workload
	File System Design
	File System Abstraction
	UNIX File System API
	File System Interface
	Interface Design Question
	Summary

