
Synchronization Part 2
Module 7

Implementing Synchronization

Synchronization Variable Interfaces
• (spin) lock

• acquire() / release() [lock()/unlock()]

• (blocking) lock [mutex]
• acquire() / release() [lock()/unlock()]

• Semaphore(int n)
• deprecated
• P – if value <= 0 then wait; decrement value
• V – increment value; if there is a waiter, wake one up
• binary semaphore (semaphore(1)) is a lock

• Condition variable(lock)
• wait() - suspend this thread and release lock
• signal() - wake up one waiting thread, if there is one, and regain its lock
• broadcast() - wake up all waiting threads, if any, and let them battle for lock

Part 1: Condition Variables
• Condition variables don’t provide mutual exclusion

• They address a problem with using locks

• Classical example: bounded buffer

put(item) {
lock(buffer);
if (empty slot) {
empty slot = item;
mark slot full;
unlock(buffer);

} else {
???

}

get() {
lock(buffer);
if (full slot) {
retval = contents of slot;
mark slot empty;
unlock(buffer);
return retval;

} else {
???

}
}

Bounded Buffer: Naive Fix 1

put(item) {
if (empty slot) {

lock(buffer);
empty slot = item;
mark slot full;
unlock(buffer);

} else {
while (no empty slot) {};
lock(buffer):
assign item to empty slot;
mark empty slot full;
unlock(buffer);

}

Why doesn’t this work?

Idea: Don’t acquire the lock until you’re
sure there’s an empty slot.

Bounded Buffer: Naive Fix 2

put(item) {
done = false;
while (!done) {};

lock(buffer);
if (empty buffer) {

assign item to empty slot;
mark empty slot full;
done = true;

}
unlock(buffer);

}
}

Idea: Try, try again.

Does this work?

Bounded Buffer: Naive Fix 3

put(item) {
result = false;
lock(buffer);
if (empty slot) {

assign item to empty slot;
mark empty slot full;
result = true;

}
unlock(buffer);
return result;

}
Does this work?

Idea: Not my problem.

Why Can’t I Get This Right?
• The thread needs to hold a lock while it’s checking for some condition

• Otherwise, checking is basically useless
• E.g., is there a free slot?

• If the condition doesn’t hold, the thread can’t proceed

• So, it needs to block

• It also needs to release the lock
• otherwise the condition can’t be changed (by any other thread)

Why Can’t I Get This Right?
• Situation: A thread T holding a lock needs to wait until some condition holds

• “Wait” by blocking, not spinning
• Why not spin

• as fast as you can?
• slowly (embed sleep() in loop)?

• Auto mechanic shop question from midterm...

• Ideally, when it blocks it will be woken up only when there’s reason to believe the
condition holds

• So, it’s woken up by some other thread that observes the condition holds
• Not based on time

Why Can’t I Get This Right?
• Situation: A thread holding a lock needs to

• wait until some condition holds
• unlock the lock

• Thread can’t block then release the lock
• Why?

• Thread also can’t release the lock then block
• Why?

• We need a single, atomic action that both suspends the thread and releases the
lock it has

• condition variables!

Condition Variables (CVs)
• Condition variables solve the “can’t block then unlock and can’t unlock ghen

block” problem

• Condition variables have two operations
• wait(cv, lock)
• signal(cv)

• wait(cv,lock) atomically:
• blocks the calling thread and puts it on a queue associated with the CV
• unlocks the lock

• signal(cv) wakes up a single thread blocked on the CV, if there is one, and
otherwise does nothing

• If a thread is woken up, it reacquires the lock then returns from the
wait(cv,lock) call that had blocked it

• broadcast(cv) wakes up all blocked threads, if any, but only one can gain the lock
at a time

Bounded Buffer: Condition Variables

put(item) {
lock(bufferlock);
while (buffer is full) {

wait(emptyCV, bufferlock);
}
assign item to empty slot;
mark empty slot full;
signal(fullCV);
unlock(buffer);

}

get() {
lock(bufferlock);
while (buffer is empty) {

wait(fullCV, bufferlock);
}
take item;
mark slot empty;
signal(emptyCV);
unlock(bufferlock);
return item;

}

Lock bufferlock;
ConditionVariable emptyCV;
ConditionVariable fullCV;

Why the while loops?
put(item) {

lock(bufferlock);
while (buffer is full) {

wait(emptyCV, bufferlock);
}
assign item to empty slot;
mark empty slot full;
signal(fullCV);
unlock(buffer);

}

get() {
lock(bufferlock);
while (buffer is empty) {

wait(fullCV, bufferlock);
}
take item;
mark slot empty;
signal(emptyCV);
unlock(bufferlock);
return item;

}

• No one said the thread woken up by signal() must be the thread
that next acquires the lock!

• Some other thread could run after the signal and before the
awoken thread, and invalidate the condition

• Okay, Tony Hoare said the awoken thread gets the lock, but it’s too
restrictive to implement that so everyone uses Mesa semantics

Condition Variable Use Correctness

1. What if your code forgets to signal?

2. What if your code or signals before some thread waits (and not
again after)?

3. What if your code mistakenly signals a condition when it doesn’t
hold?

4. What if you just signal every other instruction (“because you feel
like it”)?

Part II: Memory Semantics

Core

Memory

Cache

Cache is fast compared to
memory.

Cache is slow compared to
core.

Write Buffer

Core

Memory

Cache

Write buffer absorbs (limited)
bursts of writes.

When reading a memory
location, most recent value
written may be in:
• cache
• write buffer
• memory

So, core always sees “sequential
semantics” for its own writes
• the value it reads is the last

one it wrote
• as seen by its own reads,

writes happen in order

Write Buffer

But what about this?

Memory
banks

Multi-core

Suppose locations A and B start out with value 0.
Core 0 writes 1 to A and then 1 to B, and no one else writes.

Can core 0 read memory and find B==1 and A==0?
Can core 2 read memory and find B==1 and A==0?

Question: Can this panic?
Thread 1

p = someComputation();
pInitialized = true;

Thread 2

while (!pInitialized)
;

q = someFunction(p);
if (q != someFunction(p))

panic

Will this code work?
if (p == NULL) {

lock.acquire();
if (p == NULL) {

p = newP();
}
lock.release();

}
use p->field1

newP() {
p = malloc(sizeof(p));
p->field1 = …
p->field2 = …
return p;

}

Why Does Reordering Occur?
Why do compilers reorder instructions?
• Efficient code generation requires analyzing control/data dependency
• If variables can spontaneously change, most compiler optimizations become

impossible

Why do CPUs reorder instructions?
• Write buffering: allow next instruction to execute while write is being completed

Fix: memory barrier
• Instruction to compiler/CPU
• All ops before barrier complete before barrier returns
• No op after barrier starts until barrier returns

The implementations of synchronization primitives perform memory barriers.

Your code probably doesn’t (except by correctly synchronizing)!

Spinlock Implementation in xk

void acquire(struct spinlock *lk) {
pushcli(); // disable interrupts to avoid deadlock.
if (holding(lk))

panic("acquire");

// The xchg is atomic.
while (xchg(&lk->locked, 1) != 0)

;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();

// Record info about lock acquisition for debugging.
lk->cpu = mycpu();
getcallerpcs(&lk, lk->pcs);

}

Spinlock Implementation in xk

void release(struct spinlock *lk) {
if (!holding(lk))

panic("release");

lk->pcs[0] = 0;
lk->cpu = 0;

__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m"(lk->locked) :);

popcli();
}

How many spinlocks?

• Various data structures
• Queue of waiting threads on lock X
• Queue of waiting threads on lock Y
• List of threads ready to run

• One spinlock per kernel?
• Bottleneck!

• Instead:
• One spinlock per blocking lock
• One spinlock for the scheduler ready list

• Per-core ready list: one spinlock per core

Mutex Implementation, Uniprocessor

Lock::acquire() {
disableInterrupts();
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}
enableInterrupts();

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

} else {
value = FREE;

}
enableInterrupts();

}

Lock Implementation, Multiprocessor

Lock::acquire() {
disableInterrupts();
spinLock.acquire();
if (value == BUSY) {

waiting.add(myTCB);
suspend(&spinlock);

} else {
value = BUSY;

}
spinLock.release();

enableInterrupts();
}

Lock::release() {
disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();
scheduler->makeReady(next);

} else {
value = FREE;

}
spinLock.release();
enableInterrupts();

}

What thread is currently running?

• Thread scheduler needs to find the TCB of the currently running
thread
• To suspend and switch to a new thread
• To check if the current thread holds a lock before acquiring or

releasing it

• On a uniprocessor, easy: just use a global

• On a multiprocessor, various methods:
• Compiler dedicates a register (e.g., r31 points to TCB running on the

this CPU; each CPU has its own r31)
• If hardware has a special per-processor register, use it
• Fixed-size stacks: put a pointer to the TCB at the bottom of its stack

• Find it by masking the current stack pointer

Lock Implementation, Linux
• Most locks are free most of the time

• Why?
• Linux implementation takes advantage of this fact

• Fast path
• If lock is FREE, and no one is waiting, two instructions to acquire

the lock
• If no one is waiting, two instructions to release the lock

• Slow path
• If lock is BUSY or someone is waiting, use multiproc impl.

• User-level locks
• Fast path: acquire lock using test&set
• Slow path: system call to kernel, use kernel lock

Lock Implementation, Linux
struct mutex {
/∗ 1: unlocked ; 0: locked;

negative : locked, possible
waiters ∗/

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

};

// atomic decrement
// %eax is pointer to count
lock decl (%eax)
jns 1 // jump if not signed

// (if value is now 0)
call slowpath_acquire

1:

“Rules” for Using Synchronization

• Use consistent structure

• Always use locks and condition variables

• Always acquire lock at beginning of procedure and

release at end

• Always hold lock when using a condition variable

• Always wait() in while loop

• Never spin in sleep()

	Synchronization Part 2�Module 7
	Implementing Synchronization
	Synchronization Variable Interfaces
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Question: Can this panic?
	Will this code work?
	Why Does Reordering Occur?
	Spinlock Implementation in xk
	Spinlock Implementation in xk
	How many spinlocks?
	Mutex Implementation, Uniprocessor
	Lock Implementation, Multiprocessor
	What thread is currently running?
	Lock Implementation, Linux
	Lock Implementation, Linux
	“Rules” for Using Synchronization

