
CSE 451: Operating Systems
Spring 2020

Module 2
Architectural Support for Operating Systems

John Zahorjan

1

Lecture Questions

• What is the basic control flow of the system?
• Why do transitions from user code to the OS take place?
• Since they run on the same CPU, why can’t applications do

everything the OS can do?
• What happens on a transition from user code into the OS?
• On a transition from the OS to user code?
• What mechanisms does the hardware provide to help the OS keep

control of the system?
• When the OS is running, what stack is it using (in xk)?
• How does xk use the segmented memory system provided by

x86_64?
• How is memory protected?
• How are IO devices protected?

Low-level architecture affects the OS
dramatically

App

Hardware

Who’s making sure the app behaves?

Who should get to define what “behaves” means?

(Hardware provides mechanism and OS provides policy.)

Low-level architecture affects the OS
dramatically
• The operating system supports sharing of hardware and protection

of hardware
• multiple applications can run concurrently, sharing resources
• a buggy or malicious application can’t violate other applications or the

system

• Those are high level goals
• There are many mechanisms that can be used to achieve them

• The architecture determines which approaches are viable
(reasonably efficient, or even possible)

• includes instruction set (synchronization, I/O, …)
• also hardware components like MMU or DMA controllers

Architectural features affecting OS’s

• These hardware features were built primarily to support OS’s:
• timer (clock) operation
• synchronization instructions (e.g., atomic test-and-set)
• memory protection
• I/O control operations
• interrupts and exceptions
• protected modes of execution (kernel vs. user)
• privileged instructions
• system calls (and software interrupts)
• virtualization architectures

The OS Needs To Be Special
• Only the OS should be able to:

• directly access I/O devices (disks, network cards)
• why?

• manipulate memory state management
• page table pointers, TLB loads, etc.
• why?

• manipulate special ‘mode bits’
• interrupt priority level
• why?

• But users can put any bit strings in memory they want
• so they can execute any instructions that the OS uses to do those things

• So how can this work?

6

So How Can This Work?
• Some hardware resource must be available to the OS but not to applications

• Could be instructions
• Could be access to special registers and/or addresses

• Turns out it’s both!

• The CPU hardware provides privileged instructions that “only the OS can
execute”

• Some resources can be modified only by instructions that are privileged
• E.g., information related to address translation

• The OS can use them to establish an execution environment that limits
access (e.g., to memory)

• The application cannot remove the restrictions because it must execute privileged
instructions to do so

“... only the OS can execute”

• This is a policy goal
• What mechanism(s) can be used to achieve it?

• Q1: How can the CPU hardware tell when the OS is running?
• A1: It can’t. The OS is a concept, the hardware is a state machine.

• Q2: What should happen when something that isn’t the OS tries to
execute a privileged instruction?

• (Poor) A2: As a mechanism, the CPU could just consider it to be a NOP, say.
• (Good) A2: Gee, what happens is really a policy decision. The OS should

make it, not the hardware.

Policy/Mechanism

• Here’s my lame analogy
• Back when you could go out to a restaurant for dinner

• You set the policy: what set of things to order, maybe what order they arrived in
• The restaurant implemented the mechanism: a menu of things you could order, a

stockpile of ingredients, pots/pans/stove, a chef, waitstaff

• You can order a bottle of wine and pancakes if you want
• That’s a positive
• The restaurant is flexible enough to be attractive to all sorts of customers,

even some who seem crazy

• What is the equivalent of pots and pans and stoves and chefs in the
CPU?

• What are the CPU mechanisms that allow the OS to realize its policies?

Mechanism: How Does CPU Decide Whether
or Not to Execute a Privileged Instruction

• Privilege Level: There is at least one bit of data somewhere
accessible to the CPU (e.g., in a special register)

• When the bit == 1 we say we’re executing in privileged mode, and the CPU is
willing to execute privileged instructions

• When the bit == 0 we say we’re executing in unprivileged (or user) mode,
and the CPU is unwilling to execute privileged instructions

• Exception Mechanism: What happens if the CPU fetches a privileged
instruction while in unprivileged mode?

• It invokes the OS, so that it can decide what to do
• We’ll see exactly how in just a bit

Making CPU Privilege Mode == Running OS

Time

user

code

user

OS

user

code OS

privileged privilegeduser

• OS runs first (boot)
• CPU starts in privileged mode

• OS sets privilege mode to user before handing CPU over to user code
• So far so good...

• Eventually we need to run the OS again...

OS

privileged

Entering the OS: system calls

• Sometimes user code wants the OS to do something for it
• E.g., read/write files, send/receive network data, start another program

running, etc.
• In the abstract, it wants to do a procedure call, as though the OS

were a library
• Establish some arguments to be passed to the OS
• Let the OS run for a bit and produce return values
• Return to the statement following the call to the OS procedure
• Find the return values produced by the OS

• CPU is at user privilege while executing user code
• CPU needs to be in privileged mode while executing the OS
• How can the user cause the CPU to transition from unprivileged to

privileged?

Making CPU Privilege Mode == Running OS

Time

user

code

user

OS

user

code OS

privileged privilegeduser

• Each transition from user level code to OS code transfers control to the same place
(the orange arrow)

• The user level code passes as an argument a “syscall number” identifying which
operation it is asking for (as well as any further arguments needed for that system
call)

• The OS runs at privileged level starting with lines of code it decided upon
• User level code can’t both elevate CPU privilege level and define what instruction

to execute next

OS

privileged

System Calls

• User programs must cause execution of an OS
• OS defines a set of system calls
• App code places a bunch of arguments to the call somewhere the OS can a

find them
• e.g., on the stack or in registers

• One of the arguments is names the system call that is being requested
• usually a syscall number

• App executes a syscall instruction
• CPU privilege level is set to privileged
• PC is set to the contents of a privileged register
• during boot the OS set that register to point at the OS “trap handler” method
• user code can’t mess with it because modifying that register is a privileged operation

syscall/sysret instructions

• The syscall instruction atomically:
• Sets the execution mode to privileged
• Sets the PC to a handler address (that was established by the OS during boot)
• Saves the current (user) PC

• Why?

• The sysret instruction atomically:
• Restores the previously saved user PC
• Sets the execution mode to unprivileged

“Protected procedure call”

• Caller puts arguments in a place callee expects (registers or stack)
• Caller causes jump to OS by executing syscall instruction

• The OS determines what address to start executing at, not the caller
• One of the passed args is a syscall number, indicating which OS function to invoke
• Some hardware state that can’t be saved if left to software (e.g., the user level PC of

the instruction that follows the syscall instruction) is “pushed on the stack”
• Which stack?

• Callee (OS) saves caller’s state (registers, other control state) so it can use the
CPU

• OS function code runs
• OS must verify caller’s arguments (e.g., pointers)

• OS (mostly) restores caller’s state
• OS returns by executing sysret instruction

• Automatically sets sets execution mode to user and PC to return address previously
saved on the stack

A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read() handler in vector table

trap handler

sys_read() kernel routine
Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

SYSRET instruction

PC = saved PC
Enter user mode

One More Issue: Stacks
• The kernel code is structured like user level code

• It needs a stack
• The transition from user level to kernel level must involve a change in

which stack is in use
• A stack is just a region of memory used as the stack, so there can be any

number of them in memory
• On some processors this transition is done in software
• On the x86 family it is done in hardware as part of the syscall

instruction
• On syscall, the user-level SP is saved to a temporary, the SP is set to an

address in a privileged register previously initialized by the OS, and then the
temporary is pushed onto that stack (along with the user-level PC)

• On sysret, more or less the reverse is done

• Why can’t the OS just use the user-level stack?

x86 Interrupt Stack

System call issues

• What would be wrong if a syscall worked like a regular subroutine
call, with the caller specifying the next PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments to or results
from system calls?

• What does that question mean?!

Exception Handling and Protection

• All entries to the OS occur via the mechanism just described
– Acquiring privileged mode and branching to the trap handler are

inseparable

• Terminology:
– Interrupt: asynchronous event; caused by an external device
– Exception: synchronous event; unexpected problem with instruction
– Trap: synchronous event; intended transition to OS due to an instruction

• Privileged instructions and resources are the basis for most
everything: memory protection, protected I/O, limiting user
resource consumption, …

Some Details

• The architecture defines the trap handling mechanism
• Exactly what’s done in hardware and what in software differs across

architectures
• So, what I described isn’t “the way it’s done” it’s more the idea of the way it’s

done

• For example, x86 trap handling doesn’t have a register that gives the
single entry point into the OS, it has something more complicated

• You can think of it as a privileged register that points to an array of entry
addresses

• On trap/exception/interrupt, the hardware uses the
trap/exception/hardware type (a number, called the “vector”) to index the
table and set the PC

• In general, x86 does a lot of complicated things in hardware, and
RISC-like processors try to push as much as possible to software

x86 Interrupt/Trap Handling: Interrupt vectors

x86 Interrupt/Trap Handling: Overview

x86 Interrupt/Trap Handling: Finding the IDT

x86 Interrupt/Trap Handling: IDT entries

x86 Interrupt/Trap Handling: Segment
Descriptors

x86 Interrupt/Trap Handling: Stacks

Exception Summary
• Basically all protection provided by the OS relies in some way on the

exception mechanism
• Performance requires application code to run directly on the CPU and

memory hardware
• That leaves it to the hardware to intercept unsafe/illegal activity
• Separation of policy and mechanism means that when the hw notices

something wrong, it has to invoke the OS to decide what to do in response
• A weak point in OS security has been that not all checking is dynamic.

Instead, the OS sets up an environment for application execution that it
believes means nothing bad can happen without causing an exception.

• The same mechanism is used used whenever the hardware wants to
“upcall” to the OS, even when nothing has gone wrong

• Interrupts: some IO device wants attention
• Traps: user level code wants to do a syscall

Exception Generalization
• To think about:

• Let’s move up a level, from hw/sw to os/user-level code.

• Might there be situations in which it makes sense for the OS to provide
mechanism and the application to provide policy

• The OS mechanism would be the detection of some event
• The application policy would be the steps it wants to take in response to that event
• What might be an example of an OS-level “event”?

• What would the mechanism to “upcall” from OS to app need to do?
• Invoke a handler method in the app, impling
• Finding a thread of execution to execute the handler (a stack)
• How would it know the location of the handler?

Issue: Memory protection
• OS must protect user programs from each other

• malice, bugs

• OS must also protect itself from user programs
• integrity and security
• what about protecting user programs from OS?

• Simplest scheme: base and limit registers
• (Hey, segments!)
• are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers are
loaded by OS before starting
program

More sophisticated memory protection

• Paging, segmentation, virtual memory
• page tables, page table pointers
• translation lookaside buffers (TLBs)
• page fault handling

• Coming later in the course
• also coming earlier in your course sequence!
• so we won’t spend much time on these in 451

Issue: I/O control

• Issues:
• how does the OS start an I/O?

• special I/O instructions
• memory-mapped I/O

• special addresses, not special instructions

• how does the OS notice an I/O has finished?
• polling
• Interrupts

• how does the OS exchange data with an I/O device?
• Programmed I/O (PIO)
• Direct Memory Access (DMA)

Asynchronous I/O

• Interrupts are the basis for asynchronous I/O
• device performs an operation asynchronously to CPU
• device sends an interrupt signal on bus when done
• in memory, a vector table contains list of addresses of kernel routines to

handle various interrupt types
• who populates the vector table, and when?

• CPU switches to address indicated by vector index specified by interrupt
signal

• What’s the advantage of asynchronous I/O?

Issue: Taking the CPU Back from Apps

• How can the OS prevent runaway user programs from hogging the
CPU (infinite loops?)

• Use a hardware timer that generates a periodic interrupt
• before it transfers to a user program, the OS loads the timer with a time to

interrupt
• “quantum” – how big should it be set?

• when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should access to the timer be privileged?
• for reading or for writing?

Issue: Synchronization

• Interrupts cause a wrinkle:
• may occur any time, causing code to execute that interferes with code that

was interrupted
• OS must be able to synchronize concurrent processes

• Synchronization:
• guarantee that short instruction sequences (e.g., read-modify-write) execute

atomically
• one method: turn off interrupts before the sequence, execute it, then re-

enable interrupts
• architecture must support disabling interrupts

• Privileged???

• another method: have special complex atomic instructions
• read-modify-write
• test-and-set
• load-linked store-conditional

“Concurrent programming”

• Management of concurrency and asynchronous events is biggest
difference between “systems programming” and “traditional
application programming”

• “event-driven” application programming is a middle ground
• And in a multi-core world, more and more apps have internal concurrency

and more and more languages acknowledge and support it

• Arises from the architecture
• Can be sugar-coated, but cannot be totally abstracted away

• Huge intellectual challenge
• Unlike vulnerabilities due to buffer overruns, which are just sloppy

programming

Architectures are still evolving

• New features are still being introduced to meet modern demands
• Support for virtual machine monitors
• Hardware transaction support (to simplify parallel programming)
• Support for security (encryption, trusted modes)
• Increasingly sophisticated video / graphics
• Other stuff that hasn’t been invented yet…

• In current technology transistors are free – CPU makers are looking for
new ways to use transistors to make their chips more desirable

• Intel’s big challenge: finding applications that require new hardware
support, so that you will want to upgrade to a new computer to run
them

Some questions

• Why wouldn’t you want a user program to be able to access an I/O
device (e.g., the disk) directly?

• Why would you?!

• OK, so what keeps this from happening? What prevents user
programs from directly accessing the disk?

• How then does a user program cause disk I/O to occur?

Some questions
• What prevents a user program from scribbling on the memory of another

user program?
• Why might you want to allow it to?

• What prevents a user program from scribbling on the memory of the
operating system?

• What prevents a user program from over-writing its own instructions?
• Why do you want to prevent that?
• Why do you want to allow it?!

• Is there any reason to support preventing an application from over-writing
any of its own data?

• Is there a use for read-only data memory?

• What prevents a user program from doing a denial of service attack on the
CPU simply by going into an infinite loop?

Lecture Question Answers

• What is the basic control flow of the system?
• The CPU switches between running OS code and application code

• Why do transitions from user code to the OS take place?
• Interrupts – some IO device (typically) needs attention
• Exceptions – the CPU has detected something problematic in completing execution of an

instruction
• Trap – the purpose of the instruction being executed is to transition into the OS (syscall)

• Since they run on the same CPU, why can’t applications do everything the OS can do?
• The hardware has two or more privilege levels
• Some instructions are privileged – require a sufficiently high privilege level – for the CPU to be

willing to execute them
• What happens on a transition from user code into the OS?

• Some registers that execution of the OS is about wipe out are saved by hardware, e.g., the user
code PC at which the switch is occurring

• The PC is set to the address previously set by the OS. The address is a safe entry point into the OS.
• The privilege level of the CPU is elevated so that it can execute privileged instructions
• The hw or sw saves all registers so that execution of the user code can eventually be resumed

• On a transition from the OS to user code?
• The previously saved registers (including the PC) are restored on t he CPU
• The privilege level is lowered to user level

Lecture Question Answers

• What mechanisms does the hardware provide to help the OS keep
control of the system?

• CPU privilege level + privileged instructions
• memory access limitations, e.g., virtual memory
• the exception mechanism – detecting when something that needs OS

attention has happened and causing a switch into the OS

• When the OS is running, what stack is it using (in xk)?
• A per-process kernel stack

• How does xk use the segmented memory system provided by
x86_64?

• It basically renders it moot by mapping every hardware segment to the full
linear address space (i.e., base 0 and length 4GB)

Lecture Question Answers

• How is memory protected?
• On modern system, virtual memory
• The OS sets a privileged CPU register to point to address mapping structures

for the address space the CPU should be using (e.g., when it dispatches a
user process)

• How are IO devices protected?
• Depending on the architecture or even system, it could be privileged

instructions are required to commuhnicate with the IO devices, or it could be
that protected addresses must be read/written to communicate with them

	CSE 451: Operating Systems�Spring 2020��Module 2�Architectural Support for Operating Systems
	Lecture Questions
	Low-level architecture affects the OS dramatically
	Low-level architecture affects the OS dramatically
	Architectural features affecting OS’s
	The OS Needs To Be Special
	So How Can This Work?
	“... only the OS can execute”
	Policy/Mechanism
	Mechanism: How Does CPU Decide Whether or Not to Execute a Privileged Instruction
	Making CPU Privilege Mode == Running OS
	Entering the OS: system calls
	Making CPU Privilege Mode == Running OS
	System Calls
	syscall/sysret instructions
	“Protected procedure call”
	A kernel crossing illustrated
	One More Issue: Stacks
	x86 Interrupt Stack
	System call issues
	Exception Handling and Protection
	Some Details
	x86 Interrupt/Trap Handling: Interrupt vectors
	x86 Interrupt/Trap Handling: Overview
	x86 Interrupt/Trap Handling: Finding the IDT
	x86 Interrupt/Trap Handling: IDT entries
	x86 Interrupt/Trap Handling: Segment Descriptors
	x86 Interrupt/Trap Handling: Stacks
	Exception Summary
	Exception Generalization
	Issue: Memory protection
	More sophisticated memory protection
	Issue: I/O control
	Asynchronous I/O
	Issue: Taking the CPU Back from Apps
	Issue: Synchronization
	“Concurrent programming”
	Architectures are still evolving
	Some questions
	Some questions
	Lecture Question Answers
	Lecture Question Answers
	Lecture Question Answers

