
Lab 2 Discussion

CSE451 20Au - 10/22/2020

Admin

- Lab 2 design doc due tomorrow
- Late days are fine, but try to get them in sooner to get started on lab 2

Agenda

● I have some discussion questions related to lab 2

● I also have the section 3 slides to refer back to if you need a high-level overview of

anything
○ Feel free to yell at me

Lab 2 - Processes
IF IN DOUBT: DO WHAT LINUX DOES

Debugging in the Trap

● You will likely encounter an error from the trap like the below image during your xk

endeavors
○ Do not fear!

● Trap frame contains registers saved before jumping into the kernel
○ See kernel/trapasm.S for the mechanism there

● This can be useful!

● tf->trapno, “trap number”
○ Gives the “reason” why kernel was invoked
○ See inc/trap.h for trapno indicators

● Trap frame registers can help give context for why you’re in the kernel
○ In gdb, `x tf->rip` can give program counter that caused fault, for example

fork()

● Create a new process by duplicating the calling process.

● Returns twice!
○ 0 in the child (newly created) process
○ Child’s PID in the parent

● How does fork() “return twice”?
○ I.e. when the child process is scheduled for the first time, it returns from the fork system call with a

return value of 0
○ Thoughts?

wait()/exit()

● wait(): Sleep until a child process terminates, then return that child’s PID.

● exit(): Halts program and sets state to have its resources reclaimed

● Why can’t a process not clear out it’s own proc struct in `exit`?
○ Who is responsible?

● If a parent process calls `exit` before its child finishes executing, how does the child

process need to be modified to guarantee that someone will wait for the child?

Process States

Fill out the process state diagram below. Draw arrows from one state to another with the action

that would result in that transition

UNUSED EMBRYO RUNNABLE

RUNNING

ZOMBIE

SLEEPING

pipe(pipefds)

● Creates a pipe (internal buffer) for reading from/writing to

● From the user perspective: two new files
○ One (“read end”) is not writable
○ Other (“write end”) is not readable

● You’ll want to somehow make this compatible with the read/write(fd) interface

● Managing a circular buffer with read end and write end

● If reading and pipe is empty,
○ Reader should wait until some data is available

● If writing and pipe is full,
○ Writer should wait until it has some room to write

● How do you tell if a pipe is full/empty?

● Suppose a reader of a pipe is sleeping waiting for the writer to write some data
○ If writer process is killed before it gets a chance to write data, how does the reader get woken up?
○ What should the read call return?

Pipes

pipe

r_offset w_offset

Some data

exec(progname, args)

Replaces the process’ state by executing the given program with the given arguments.

This will require you to (carefully!) set up the process’ stack memory and register state.

This will be tricky! You’ll be using a number of vspace____ functions

- init, loadcode and initstack may be helpful for initializing a new memory space

- use vspacewritetova to export data to a page table that isn’t currently installed

- once the memory space is ready, use vspaceinstall(myproc()); to engage

- and free the old vspace!

● When creating the user stack in xk, what should the stack pointer start at?
○ (this would be an argument to pass to vspaceinitstack)

Main’s Stack

argc%RDI

argv%RSI

*%RSP
Return PC
argv[0]
argv[1]

[…]
argv[argc - 1]

0
Arg #0 string
Arg #1 string

[…]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array
of pointers, %RSI
points to an array on
the stack

● Since each element of
argv is a char*, each
element points to a
string elsewhere on
the stack

Practice Exercise 1

???%RDI

???%RSI

???%RSP

// High addresses

// Stack grows
// down

TODO:
Draw stack layout and
determine register values
for exec called with
“cat cat.txt”

Practice Exercise 1: soln

2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
argv[1]
Argv[2] = NULL

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which
is 2

● RSI holds argv: the
beginning of the argv
array

● RSP is properly set to
the bottom of the
stack.

● The specific value of
the return PC doesn’t
matter (program
exits from main
without returning)

Good luck on Lab 2!
And also the design doc, please submit the Canvas assignment to
let us know when you’ve finished that

